
ni.com

Everyday I’m toggling

GPIOs on USRPs:
The definitive guide

Martin Braun

Chief Engineer

ni.com

What is a GPIO? And what's it doing on a USRP?

• Wikipedia: "A general-purpose input/output (GPIO) is an uncommitted digital signal pin on

an integrated circuit or electronic circuit board which may be used as an input or output, or

both, and is controllable by software. […] GPIOs have no predefined purpose and are

unused by default."

• Basically, this is what makes Raspberry Pis, Arduinos useful and attractive.

• We have those on USRPs, too!

These Things

https://en.wikipedia.org/wiki/Pin_(electronics)
https://en.wikipedia.org/wiki/Integrated_circuit

ni.com

Part 1: Light ‘em up!

Everyone starts with blinking LEDs

ni.com

Hello World of GPIOs: Blinking an LED

• Let's rock & roll!

Never source/sink current from

GPIO pins! 5 mA max!

ni.com

Hello World of GPIOs: Blinking an LED

• Use separate power supply to provide current (e.g., lab supply, or some USRP have power

pins for this use case)

• De-couple GPIOs from your circuit (e.g., with Darlington)

• Don't draw/sink too much current (< 5 mA)!

ni.com

Hello World of GPIOs: Blinking an LED

• Set up GPIOs

• Toggle pin on/off

ni.com

Part 2: Tracking radio state

Using ATRs

ni.com

ATRs: Registers that follow TRX state

• Every radio channel has four possible states

• Every GPIO pin can be set to a value depending

on the current state (Tx/Rx/Idle/Full Duplex)

• Alternatively, the user can choose to manually

program the GPIO regardless of state

GPIO Registers

GPIO OUT

ATR: Idle

ATR: Tx

ATR: Rx

ATR: FDX
From FPGA:
Current Radio
State

From User:
Desired Mode

ni.com

ATRs: Registers that follow TRX state

• How do our LEDs know when to light up green or red? They are connected to ATR registers!

• Front-panel pins can also follow ATR state, e.g., to control amplifiers

• [show animation of RX and TX, with a custom LED following the TX/RX state

ni.com

Part 3: Connecting to GPIOs

Connector Diversity

ni.com

X3x0 / N3x0

• DB15 Connectors (Joystick-Connector)

• GPIOs are 3.3V

• 12 pins

• Use Breakout for experimentation

• Switching speed < 10 MHz

ni.com

X410

• Dual HDMI, 12 pins per connector

• Controllable GPIO voltage (1.8/2.5/3.3V)

• 3.3V Default GPIO voltage

• Dedicated 3.3V pin for power (up to 450 mA)

• Use breakout boxes for experimentation

• Switching speed < 100 MHz

• SPI-mode available

ni.com

E320

• Mini-HDMI Connector on back-panel

• Recommendation: Use Mini-HDMI to HDMI cable, then

breakout like regular HDMI GPIO

• 8 GPIOs available

• 3.3V GPIO voltage

ni.com

E310

• Internal pins only

(requires opening enclosure)

• 6 GPIOs (3.3V)

• +3.3V pin allows drawing up to

500 mA

ni.com

B2x0-mini and B2x0

• 8 pins, 3.3V

• Mini-series: Adapter required! (Available on ettus.com)

• B200/B210: Use ribbon cable from J504

(standard 100mil spacing)

• J504 may not be populated (depending
on rev/product)

ni.com

Basic/LF Daughterboards

• Only way to get GPIOs on

N2x0/USRP2/USRP1

• Also works on X3x0

• Connected to TX/RX banks, not

FP0 banks

ni.com

Part 4: Software Control / APIs

General Concepts and Software Usage

ni.com

Concepts & Nomenclature: Banks

• GPIO “Banks” are SW-controllable
GPIOs in the FPGA, connected to
specific pieces of hardware

• UHD lets you query available banks
using the get_gpio_banks()
multi_usrp API

• For example, in X310, every Radio
has three banks (TX, RX, FP) to
control different components

• Unless using a BasicRX/TX or
LFRX/TX board, you should
probably not use the RX and TX
GPIO banks

• multi_usrp appends “A” and “B” to
distinguish banks that have the same
name on different radios

Radio 0

TX

RX

FP0

GPIO Banks in
an X310 Radio

Tx

Connector

Rx

Connector

FP

Connector

ni.com

Concepts & Nomenclature: Sources

• X310 has two radios though! Which

one controls the front-panel GPIO

connector?

• Every pin on the FP-panel GPIO

connector can be connected to a pin

on the FP-bank in one of the two

radios

• Use the get_gpio_srcs(),
get_gpio_src(), and

set_gpio_src() APIs to control

who is controlling the pins

Radio 0

TX (TXA)

RX (RXA)

FP0 (FP0A)

FP

Connector

Radio 1

TX (TXB)

RX (RXB)

FP0 (FP0B)

set_gpio_src()

ni.com

Radio 1/1

TX

RX

FP

Radio 0/1

TX

RX

FP

Concepts & Nomenclature: Sources

• Other USRPs have even more

possible sources

• N310 has two channels per radio,

each with their own banks

• All embedded devices can control

GPIOs from their embedded Linux

• X410 even lets you control the pins

from an arbitrary source within the

FPGA

Radio 0/0

TX

RX

FP0

FP

Connector

Radio 1/0

TX

RX

FP0

set_gpio_src()

PS

ni.com

Radio 1/1

TX

RX

FP

Radio 0/1

TX

RX

FP

Concepts & Nomenclature: Sources/Connectors

• If you have multiple connectors

(currently, only on X410) then you

can select GPIO sources for every

connector. Use the

get_gpio_src_banks() to

enumerate connectors and use the

first argument in set_gpio_src() to

identify which connector you’re

configuring.

Radio 0/0

TX

RX

FP0

FP Connector 0Radio 1/0

TX

RX

FP0

set_gpio_src()

PS

FP Connector 1

ni.com

Programming GPIO banks in the FPGA

• When using the regular banks (e.g., FP0 on an X310), pins can be programmed to be:

• GPIO inputs

• GPIO outputs

• ATR pins

• Example: 8 pins controlled by Channel 0

• Bottom 4 GPIOs are ATR, top 4 pins are GPIO

• Pins 6 and 7 are inputs

• ATR pins shall go high when: Pin 0 -> Idle,
Pin 1 -> Rx, Pin 2 -> Tx, Pin 3 -> Full duplex

• Pin 5 shall go high 1 second in the future

• We print high/low state of pin 7

ni.com

Topics for another day

• GPIO Voltage API: X410 has a programmable GPIO voltage (1.8, 2.5, 3.3 V)

• gpiod API: On embedded devices (E3xx, N3xx, X4xx) GPIOs can be mapped to non-UHD-

software-control (using Linux kernel APIs).

ni.com

Part 5: Protocols & Signals

Using ATRs

ni.com

Timed Toggles

• Using the time command API, we can toggle pins

at specific times

• This allows us to generate precise clock signals,

and toggle all pins in a predictable manner

• => Enables bit-banging, e.g., SPI transactions

• Timing is good, but speed is not (kHz range)

• Note that speed is limited by the circuit design, too

(albeit at higher rates)

ni.com

Want fast SPI? • On X410 only: SPI engine is included on the

device!

ni.com

X410 SPI Mode

• See to manual for details on usage

• Allows SPI transactions at up to 100 MHz

• SCLK is integer fraction of radio clock

(e.g., run radio clock at 250 MHz, and

SCLK at 250/4 MHz = 62.5 MHz)

ni.com

Happy Toggling!

• Thanks for using USRPs!

• Any more questions on GPIOs?

