An ultra reliable low latency over-the-air communication system in GNU Radio for automated guided vehicles

Johannes Demel

Department of Communications Engineering
University of Bremen, Germany

29th September 2022
Industrial Indoor Scenario - Factory Hall

Communication system requirements?
Communication system requirements

Ultra Reliable Low Latency Communication\(^1\)

Ultra Reliable
- Consecutive packet errors \(N_{sd}\)
 - \(N_{sd} = 1\) OK
 - \(N_{sd} = 2\) Critical
 - \(N_{sd} = 3\) Fatal

Low Latency \(e2e < 1\) ms
- real-time deadline
- Periodic deterministic Communication
 - small packets \(\sim 32\) B to 64 B

\(^1\)Ultra Reliable Low Latency Communication (URLLC)
What do we want to implement?

Cloud RAN

Cloud
- Abstract compute resources
- Software paradigm
- Explore platform specifics
- Characterize DSP latency

RAN
- Distributed Access Points (APs)
- Joint Digital Signal Processing (DSP)
- Verify technologies
AGV communication system

Current system
- WiFi at 2.4 GHz/5 GHz (ISM)
- Listen before talk

Application
- Currently 100 ms periodicity
- **Requirement:** Lower periodicity
- **Problem:** Current system too unreliable

Our system
- GNU Radio system at 3.8 GHz (n78)
- Dedicated campus network

Goals
- **Optimized communication system**
- **Target:** 20 ms periodicity
- High reliability
- Low latency
- Short packets

How to improve reliability?
Diversity

- Shadowing
- Blocking
- Coherence time
 > latency requirement

Frequency

- Always Rayleigh fading
- Large coherence bandwidth

Spatial

- Mitigate shadowing & blocking
- Independent fading paths

0 Düngen et al. ”Channel measurement campaigns for wireless industrial automation"
Spatial Diversity

Uplink: Joint decoding

Downlink: Cyclic Delay Diversity

Approach: Distributed access points and joint processing
Demo implementation

Application
- Linux Ethernet interface
- Foo-Over-UDP
- Socket PDU block (UDP)

DSP
- Software-only
- Polar codes
- QPSK mapping
- GFDM multicarrier

Frontend
- N310 via 10 Gbit Ethernet
- B210 via USB
Base station with distributed access points

- Antenna
 - 3.3 GHz to 3.8 GHz (Pasternack PE51084)
 - 2 × 2 MIMO
 - Custom ground plane
 - Antenna rack

- Distributed AP
 - N310 connected via Fiber
 - Octoclock sync with 10 MHz reference & 1PPS
 - 30.72 MS$^{-1}$ sample rate

- CloudRAN
 - 32-core Ryzen 3970X
 - 64 GB RAM
Mobile communication hardware

Peripherals
- same antenna with custom ground plane
- 2×2 MIMO
- Jauch JES1500WHA

Frontend
- B210
- Connected via USB
- same sample rate 30.72 MS s^{-1}

Computing
- 12-core Ryzen 5900X
- 32 GB RAM
- Connection to on-board PC
GNU Radio benefits

Multi-threaded scheduler
"It’s like two drunkards trying to share a beer. ... Sooner or later, they’re going to get into a fight." ZeroMQ by Pieter Hintjens

Infrastructure
- Qt GUI
- Hardware blocks (USRP)
- Networking (UDP etc.)

Community
- Helpful people **Thanks**!
- Huge contributor base
Implemented Out-of-Tree modules

Polar Codes
- Good for short packets
- Very fast implementation
 - ant-uni-bremen/polar-codes

Standardized symbol mapping
- LTE/NR/WiFi constellations
- Upstreamed block interleaver
 - ant-uni-bremen/gr-symbolmapping

GFDM multicarrier
- Low latency implementation
 - jdemel/gr-gfdm
- Fast synchronization
 - jdemel/XFDMSync

Support modules
- Latency measurements
 - ant-uni-bremen/gr-latency

![Schmidl and Cox correlator diagram](Schmidl_and_Cox_correlator.png)

- Sequence length: 64
- Normalize: True

![Schmidl and Cox tagger diagram](Schmidl_and_Cox_tagger.png)

- Lower Threshold: 950m
- Upper Threshold: 980m
- Sequence length: 64
- Tag Key: frame_start

![Cross-correlation tagger diagram](Cross-correlation_tagger.png)

- Detection threshold: 30
- Synchronization sequence: ...
- compensate freq. offset: 0
- Tag Key: frame_start
- Antenna port: 0
Demo parameters

- carrier frequency 3.75 GHz
 - campus network
- sample rate 30.72 MS s$^{-1}$
 - B210 maximum for 2×2 MIMO
- bandwidth 29.28 MHz
 - beyond LTE
- 56 B UDP payload → 99 B frame
 - small packets
- Over-the-air packet duration $\sim 37 \mu s$
 - Spare resources for TDM
Latency measurements
Round trip time (RTT)

- Two CPU generations (3970X, 5900X)
- Two USRPs
 - B210: 520 µs timing advance (USB)
 - N310: 320 µs timing advance (Ethernet)
- Timed TX every T_{cycle}

Application requirement: 20 ms periodicity ✓
Latency measurements

DSP

GNU Radio flowgraph measurements

DSP function measurements

<table>
<thead>
<tr>
<th>Echo</th>
<th>82 µs to 107 µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>135 µs to 166 µs</td>
</tr>
<tr>
<td>RX</td>
<td>439 µs to 565 µs</td>
</tr>
</tbody>
</table>

TX 9.3 µs

RX 135 µs $\rightarrow J = 0, L = 1$

slowest 104 µs $\rightarrow J = 2, L = 8$

Conclusion: Huge multi-threading overhead
SNR measurements
Video demo
Conclusion

Recap

- AGV system with periodic communication
- URLLC requirements
- Industrial Radio environment
- Latency and SNR measurements

Results

- GNU Radio implementation available
- Application requirements fulfilled
- High reliability
- Low latency

Conclusion

GNU Radio can support highly reliable and low latency communication!
We are hiring!

We’re hiring!

applications@ant.uni-bremen.de

More information at www.ant.uni-bremen.de
Resources

git repositories

- https://github.com/ant-uni-bremen/gr-symbolmapping
- https://github.com/ant-uni-bremen/gr-latency
- https://github.com/ant-uni-bremen/polar-codes
- https://github.com/jdemel/gr-polarwrap
- https://github.com/jdemel/gr-gfdm
- https://github.com/jdemel/XFDMFileSync