gr-dvbs2rx
An overview of the project state and path forward.

Igor Freire

Sept 26 2022 - GRCon 22 - Washington, D.C.
Project Overview
Project Overview

- GNU Radio OOT module containing:
 - DVB-S2 signal processing blocks.
 - Example flowgraphs.
 - Production-ready Python apps: `dvbs2-rx` and `dvbs2-tx`.
Project Overview

• GNU Radio OOT module containing:
 • DVB-S2 signal processing blocks.
 • Example flowgraphs.
 • Production-ready Python apps: dvbs2-rx and dvbs2-tx.

• Previous work (since 2018): FEC and upper layers.
 • Ron Economos and Ahmet Inan.
Project Overview

• GNU Radio OOT module containing:
 • DVB-S2 signal processing blocks.
 • Example flowgraphs.
 • Production-ready Python apps: `dvbs2-rx` and `dvbs2-tx`.

• Previous work (since 2018): FEC and upper layers.
 • Ron Economos and Ahmet Inan.

• New work (released in 2021): PHY, apps, examples, documentation, and improvements.
Project Overview

• GNU Radio OOT module containing:
 • DVB-S2 signal processing blocks.
 • Example flowgraphs.
 • Production-ready Python apps: dvbs2-rx and dvbs2-tx.

• Previous work (since 2018): FEC and upper layers.
 • Ron Economos and Ahmet Inan.

• New work (released in 2021): PHY, apps, examples, documentation, and improvements.

• Fully-functional software-defined DVB-S2 receiver.
Outline

• Project state.
• Path forward for optimization and improvements.
• Examples based on the Blockstream Satellite Ku-band signal.
• CPU performance results.
DVB-S2 Rx Architecture

Block Diagram

IQ Samples

Symbols

Pad Source
Label: in

AGC
Rate: 10a
Reference: 1
Gain: 1
Max Gain: 65.36k

Rotator
Phase Increment: 0

Symbol Synchronizer
Oversampling Factor: 2
Loop Bandwidth: 4.5m
Damping Factor: 1
RRC Rolloff Factor: 200m
Interpolation Method: Polyphase

Frequency Correction Block

BBdeheader
Standard: DVB-S2
FECFRAME size: normal
Code rate: 1/4

BBdescrambler
Standard: DVB-S2
FECFRAME size: normal
Code rate: 1/4

BCH Decoder
Standard: DVB-S2
FECFRAME size: normal
Code rate: 1/4
Output mode: Message

DVB-S2 PL Sync
Gold code: 0
Freq. Estimation Period: 20
MF Oversampling: 2
Debug Level: 0
ACM/VCM mode: True
Multi stream (MIS): True
PLS filter (LSB): 0x....ffffff
PLS filter (MSB): 0x....ffffff

LDPC Decoder
Standard: DVB-S2
FECFRAME size: normal
Code rate: 1/4
Constellation: QPSK
Output mode: Message
Show Corrected SNR: Off
Max Iterations: 25

Pad Sink
Label: out

rotator_phase_inc
DVB-S2 Rx Architecture

Block Diagram

IQ Samples

Symbols

Pad Source
Label: in

Pad Sink
Label: out

AGC
Rate: 10u
Reference: 1
Gain: 1
Max Gain: 65.536k

Symbols

Pad Sink
Label: out

Pad Source
Label: in

AGC
Rate: 10u
Reference: 1
Gain: 1
Max Gain: 65.536k
Symbol Synchronizer
Oversampling Factor: 2
Loop Bandwidth: 4.5m
Damping Factor: 1
RRC Rolloff Factor: 200m
Interpolation Method: Polyphase

Rotator
Phase Increment: 0
Frequency Correction Block

DVB-S2 PL Sync
Gold code: 0
Freq. Estimation Period: 20
MF Oversampling: 2
Debug Level: 0
ACM/VCM mode: True
Multi stream (MIS): True
PLS filter (LSB): 0x....fifthf
PLS filter (MSB): 0x....fifthf

LDPC Decoder
Standard: DVB-S2
FECFRAME size: 1/4
Code rate: 1/4
Constellation: QPSK
Output mode: Message
Show Corrected SNR: Off
Max Iterations: 25

BBdeheader
Standard: DVB-S2
FECFRAME size: normal
Code rate: 1/4

BBdescrambler
Standard: DVB-S2
FECFRAME size: normal
Code rate: 1/4

BCH Decoder
Standard: DVB-S2
FECFRAME size: normal
Code rate: 1/4
Output mode: Message

XFECFRAME

rotator_phase_inc
Project State and Path Forward

Current Stage

- Minimal Functionality

- Constant coding and modulation (CCM).
- Single Input Stream (SIS).
- QPSK and 8PSK constellations.
- Pilot mode operation.
- Support for RTL-SDR and USRP.
- Tested on Ubuntu and Fedora.
Project State and Path Forward

Current Stage

Minimal Functionality

- Constant coding and modulation (CCM).
- Single Input Stream (SIS).
- QPSK and 8PSK constellations.
- Pilot mode operation.
- Support for RTL-SDR and USRP.
- Tested on Ubuntu and Fedora.

Optimization and Performance

- Faster BCH and LDPC decoding.
- More efficient symbol timing sync.
- Support for lower signal-to-noise ratios (SNRs).
- Improved implementation overall.
Project State and Path Forward

Current Stage

Minimal Functionality
- Constant coding and modulation (CCM).
- Single Input Stream (SIS).
- QPSK and 8PSK constellations.
- Pilot mode operation.
- Support for RTL-SDR and USRP.
- Tested on Ubuntu and Fedora.

Optimization and Performance
- Faster BCH and LDPC decoding.
- More efficient symbol timing sync.
- Support for lower signal-to-noise ratios (SNRs).
- Improved implementation overall.

Comprehensive DVB-S2 Support
- Adaptive/variable coding and modulation (ACM/VCM).
- Multiple Input Stream (MIS).
- 16APSK and 32APSK constellations.
- Pilotless mode.
Project State and Path Forward

Current Stage

- Minimal Functionality
 - Constant coding and modulation (CCM).
 - Single Input Stream (SIS).
 - QPSK and 8PSK constellations.
 - Pilot mode operation.
 - Support for RTL-SDR and USRP.
 - Tested on Ubuntu and Fedora.

- Optimization and Performance
 - Faster BCH and LDPC decoding.
 - More efficient symbol timing sync.
 - Support for lower signal-to-noise ratios (SNRs).
 - Improved implementation overall.

- Comprehensive DVB-S2 Support
 - Adaptive/variable coding and modulation (ACM/VCM).
 - Multiple Input Stream (MIS).
 - 16APSK and 32APSK constellations.
 - Pilotless mode.

- Widely Tested, Compatible and Stable
 - Tested with more:
 - SDR boards.
 - DVB-S2 carriers.
 - Linux distributions/versions.
 - Host platforms.
Project State and Path Forward

Current Stage

Minimal Functionality
- Constant coding and modulation (CCM).
- Single Input Stream (SIS).
- QPSK and 8PSK constellations.
- Pilot mode operation.
- Support for RTL-SDR and USRP.
- Tested on Ubuntu and Fedora.

Optimization and Performance
- Faster BCH and LDPC decoding.
- More efficient symbol timing sync.
- Support for lower signal-to-noise ratios (SNRs).
- Improved implementation overall.

Comprehensive DVB-S2 Support
- Adaptive/variable coding and modulation (ACM/VCM).
- Multiple Input Stream (MIS).
- 16APSK and 32APSK constellations.
- Pilotless mode.

Widely Tested, Compatible and Stable
- Tested with more:
 - SDR boards.
 - DVB-S2 carriers.
 - Linux distributions/versions.
 - Host platforms.

DVB-S2X
Current Limitations
Current Limitations

- Disturbed by the oversampling factor at low SNR.
- Not data-aided.
Current Limitations

- Disturbed by the oversampling factor at low SNR.
- Not data-aided.
- Faster than the GR in-tree symbol sync.
- Still too slow.
- Even integer oversampling only.
Current Limitations

• Disturbed by the oversampling factor at low SNR.
• Not data-aided.

• Faster than the GR in-tree symbol sync.
• Still too slow.
• Even integer oversampling only.

• Pilotless mode not fully implemented.
• SNR limit around +2 dB in pilot mode.

• Disturbed by the oversampling factor at low SNR.
Current Limitations

- Disturbed by the oversampling factor at low SNR.
- Not data-aided.
- Faster than the GR in-tree symbol sync.
- Still too slow.
- Even integer oversampling only.
- Pilotless mode not fully implemented.
- SNR limit around +2 dB in pilot mode.
- Could be faster.
- Refactoring and benchmarking.
Example
Blockstream Satellite Reception
Hardware Setup
Example
Blockstream Satellite Reception
Carrier Info and Frequencies

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Eutelsat 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td>113º W</td>
</tr>
<tr>
<td>DL Frequency</td>
<td>12066.9 MHz</td>
</tr>
<tr>
<td>LNB LO</td>
<td>10750 MHz</td>
</tr>
<tr>
<td>L-band Frequency</td>
<td>1316.9 MHz</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>1 MBaud</td>
</tr>
<tr>
<td>MODCOD</td>
<td>QPSK 3/5</td>
</tr>
<tr>
<td>FECFRAME</td>
<td>Normal</td>
</tr>
<tr>
<td>Pilots</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Example

Blockstream Satellite Reception

Carrier Info and Frequencies

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Eutelsat 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td>113° W</td>
</tr>
<tr>
<td>DL Frequency</td>
<td>12066.9 MHz</td>
</tr>
<tr>
<td>LNB LO</td>
<td>10750 MHz</td>
</tr>
<tr>
<td>L-band Frequency</td>
<td>1316.9 MHz</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>1 MBaud</td>
</tr>
<tr>
<td>MODCOD</td>
<td>QPSK 3/5</td>
</tr>
<tr>
<td>FECFRAME</td>
<td>Normal</td>
</tr>
<tr>
<td>Pilots</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

RTL-SDR Supported
Example
Blockstream Satellite Reception
Example Commands

dvbs2-rx --source rtl --freq 1316.9e6 --samp-rate 2e6 --sym-rate 1e6 --rolloff 0.2 --modcod qpsk3/5 --frame-size normal --pilots on
Example
Blockstream Satellite Reception
Example Commands

dvbs2-rx --source rtl --freq 1316.9e6 --samp-rate 2e6 --sym-rate 1e6 --rolloff 0.2 --modcod qpsk3/5 --frame-size normal --pilots on
Example
Blockstream Satellite Reception
Example Commands

dvbs2-rx --source rtl --freq 1316.9e6 --samp-rate 2e6 --sym-rate 1e6 --rolloff 0.2 --modcod qpsk3/5 --frame-size normal --pilots on
Example
Blockstream Satellite Reception
Example Commands

dvbs2-rx --source rtl --freq 1316.9e6 --samp-rate 2e6 --sym-rate 1e6 --rolloff 0.2 --modcod qpsk3/5 --frame-size normal --pilots on
Example
Blockstream Satellite Reception
Example Commands

dvbs2-rx --source rtl --freq 1316.9e6 --samp-rate 2e6 --sym-rate 1e6 --rolloff 0.2 --modcod qpsk3/5 --frame-size normal --pilots on

RTL-SDR Source
L-band Freq.
sps=2

"Auto mode" available but a priori info recommended.
Example
Blockstream Satellite Reception
GUI Mode

dvbs2-rx --source rtl --freq 1316.9e6 --samp-rate 2e6 --sym-rate 1e6 --rolloff 0.2 --modcod qpsk3/5 --frame-size normal --pilots on --gui
CPU Utilization
High SNR Operation

gr-dvbs2rx symbol sync implementation
CPU Utilization

High SNR Operation

BCH Decoder > LDPC Decoder

gr-dvbs2rx symbol sync implementation
CPU Utilization
High SNR Operation

BCH Decoder > LDPC Decoder

gr-dvbs2rx symbol sync implementation

PL Sync with stable low CPU utilization (locked)
CPU Utilization
High SNR vs. Low SNR

18 dB SNR

4 dB SNR
CPU Utilization
High SNR vs. Low SNR

18 dB SNR

4 dB SNR

Higher LDPC Decoder utilization
CPU Utilization
High SNR vs. Low SNR

18 dB SNR

4 dB SNR

Higher LDPC Decoder utilization

BCH Decoder still the 2nd highest
CPU Utilization
High SNR vs. Low SNR

18 dB SNR

Higher LDPC Decoder utilization

4 dB SNR

BCH Decoder still the 2nd highest

Occasional peaks
Questions?

Repository: https://github.com/igorauad/gr-dvbs2rx

Docs: https://igorauad.github.io/gr-dvbs2rx/

Igor Freire
igor@blockstream.com