
Paul Cercueil <paul.cercueil@analog.com>

Libiio v1.0

26 September

2022
©2022 Analog Devices, Inc. All rights reserved.1

IIO: Industrial I/O framework

► IIO is a subsystem of the Linux kernel

▪ drivers/iio/

► For all devices that don’t fit into the « hwmon »,
« audio » or « input » subsystems

▪ ADCs, DACs, VGAs, PGAs, magnetometers,
gyrometers, light sensors, pressure sensors,
temperature sensors, etc etc…

► With wrappers in other subsystems (input,
hwmon)

► Widely supported by many vendors

▪ Analog Devices, Texas Instruments, Xilinx,
Qualcomm, STMicroelectronics…

©2022 Analog Devices, Inc. All rights reserved.2
28 September

2022

Libiio

► https://github.com/analogdevicesinc/libiio.git

► Developed and maintained by Analog Devices since 2014

▪ 56 different contributors as of September 2022

▪ Latest version is v0.24, which will (hopefully) be the last 0.x version

► Goals

▪ Interface with the IIO subsystem of the Linux kernel

▪ Abstract away the low-level details of the IIO framework

▪ High-level representation of IIO objects

► Design

▪ Provides a simple, easy-to-use API

▪ Portable C99, modular, thread-safe, runs on Linux, Windows, OSX, BSDs, ARM MBED…

©2022 Analog Devices, Inc. All rights reserved.3
26 September

2022

https://github.com/analogdevicesinc/libiio.git

Libiio – Backends

► Libiio has a clear separation between the high-

level API, and backends

▪ One application can run locally (on the target

board), over the network, over USB, over UART…

▪ Transparent to the application

▪ Does not need to care about what backend it is

running on

▪ Same API

▪ Doesn’t even need to be recompiled!

▪ Specific backends can be compiled in/out

► Allows running on non-Linux systems

©2022 Analog Devices, Inc. All rights reserved.4
26 September

2022

Libiio – Why the need for a new version?

► In 8 years of existence, Libiio never broke the API or ABI

▪ Sources written against Libiio v0.1 still compile with v0.24

▪ Binaries compiled against Libiio v0.1 still run with v0.24

► Crust accumulated over the years…

▪ Some interfaces needed to be redesigned (e.g. the scan API)

▪ Some functions became de-facto obsolete

► Some changes were impossible to implement without breaking ABI

► Hence the need for a v2 (I mean v1)

©2022 Analog Devices, Inc. All rights reserved.5
26 September

2022

Libiio v1.x – Design changes

► Libiio v1.x is in development in the “dev” branch

▪ No ETA

▪ API is pretty much stable, but not fixed in stone

► Major changes

▪ Multi-buffer hardware support

▪ A lower-level samples buffer handling mechanism

▪ Modular backends

▪ New asynchronous Libiio / IIOD protocol

▪ New experimental userspace / kernel streaming interface

©2022 Analog Devices, Inc. All rights reserved.6
26 September

2022

Libiio v1.x – Modular backends

► Libiio v0.24 supports creating a context over Ethernet, USB, UART, or from local IIO devices.

▪ Dependencies on libxml2, libusb, libzstd, libserialport…

▪ Annoying for distributions

► All backends (except local) can now be dynamically loaded

▪ Installed as their own shared library

▪ You could simply apt-get install “libiio1-backend-usb”

► Third-party Libiio backends are now possible

▪ Libiio has a backends API and helper functions

▪ All backends (except local) use exclusively Libiio’s regular and backends APIs

©2022 Analog Devices, Inc. All rights reserved.7
27 September

2022

Libiio v1.x – Data streaming

► The old Libiio v0.x API was a bit too high-level

▪ Did not give much control on the buffer operations

▪ Impossible to support multi-buffer devices

► “iio_buffer” does not stream data anymore

▪ “iio_buffer_refill”, “iio_buffer_push” are gone

► “iio_buffer” creation now takes the index of the hardware buffer

▪ For use with multi-buffer devices

► Libiio now lets you enable / disable the buffer

▪ Allows for synchronized transfers on multi-buffer devices

©2022 Analog Devices, Inc. All rights reserved.8
27 September

2022

Libiio v1.x – Low-level iio_block API

► New low-level data streaming API: “iio_block”

▪ Application allocates and manages its own iio_blocks

▪ Enqueue (give block to Libiio / kernel), dequeue (request application access)

▪ The data is transferred between enqueue and dequeue

▪ The application must not access the block’s data in the meantime

► Process:

▪ Enable desired channels for data streaming (iio_channel_enable)

▪ Create a “iio_buffer”, specifying the hardware buffer index (iio_device_create_buffer)

▪ Create a pool of blocks with the preferred size (iio_buffer_create_block)

▪ Fill them with data if transmitting

▪ Enqueue them (iio_block_enqueue)

▪ Enable the buffer (iio_buffer_enable)

▪ Dequeue one block (iio_block_dequeue), read or write the samples data, enqueue it back

▪ Repeat

©2022 Analog Devices, Inc. All rights reserved.9
28 September

2022

Libiio v1.x – High-level iio_stream API

► Applications generally don’t need such a low-level and complex interface

► For these applications, the “iio_stream” API is better

▪ “iio_buffer_create_stream”: takes the number of blocks and their size (in samples)

▪ “iio_stream_get_next_block”: dequeue the next block in the queue, and enqueue the previous one.

The returned block can then be read from, or written to

► Actually implemented on top of the low-level “iio_block” interface

©2022 Analog Devices, Inc. All rights reserved.10
28 September

2022

Libiio v1.x – Asynchronous protocol

► Libiio v0.x protocol with IIOD was ASCII based

▪ More data transferred (more important on slow interfaces e.g. UART)

▪ Required a semantic parser

► It was also synchronous

▪ You couldn’t send a new command before receiving the response to the previous one

▪ Only one transfer direction is busy at any given time (not full-duplex)

▪ Impossible to support asynchronous messages (e.g. IIO events)

► Now commands are performed by worker threads

▪ One thread handles transmitting, one thread handles receiving

▪ IIOD clients (e.g. network backend) get an ID, which identifies commands and responses

©2022 Analog Devices, Inc. All rights reserved.11
27 September

2022

Libiio v1.x – New DMABUF interface

► The local backend now supports a new kernel / userspace interface based on DMABUF

▪ Only two extra IOCTLs (ALLOC, ENQUEUE)

▪ Dequeueing a block using poll()

▪ Freeing a block using close()

▪ Access the data using mmap()

► In theory…

▪ Much faster than the current upstream interface (fileio based)

▪ Would allow to dequeue a DMABUF from a IIO device, and enqueue it to a different one

▪ Zero-copy!

► In practice:

▪ Refused upstream as a simple kernel / userspace interface

▪ I need to come up with the full zero-copy mechanism to justify the use of DMABUF

▪ Or find another solution…

©2022 Analog Devices, Inc. All rights reserved.12
27 September

2022

Libiio v1.x – Compatibility

► Libiio / IIOD communication:

▪ Libiio v1.0 can talk to IIOD v0.x (including tinyIIOD) or v1.0

▪ Libiio v0.x can talk to IIOD v1.0 as well

► Compatibility layer

▪ Separate library, replaces libiio.so.0

▪ Run apps built for Libiio v0.x (including IIOD) with Libiio v1.0

©2022 Analog Devices, Inc. All rights reserved.13
27 September

2022

Libiio v1.x – Timestamp API

► Planned to be implemented in ADI’s axi-dmac IP core

► Allow enqueueing blocks of samples at a very specific point in time

▪ E.g. “transfer buffer in exactly +300 clock cycles”

► Allow detection of underruns / overruns

©2022 Analog Devices, Inc. All rights reserved.14
27 September

2022

Libiio v1.x – Performance

► “iio_readdev” on a ZedBoard, over 1Gbps Ethernet, 32k samples blocks:

▪ Libiio v0.24: 43 MiB/s

▪ Libiio v1.0: 64 MiB/s

► Same experience with a Pluto SDR, USB backend:

▪ Libiio v0.24: 24 MiB/s

▪ Libiio v1.0: … 24 MiB/s

► Huge perf increase only when the link is the bottleneck

©2022 Analog Devices, Inc. All rights reserved.15
27 September

2022

Libiio v1.x – Why should you care?

► gr-iio uses Libiio

► gr-iio will have to be updated when Libiio v1.0 is released

▪ Support for multi-buffer IIO devices

▪ Less overhead thanks to the async protocol

▪ … that’s about it

► In the meantime… it works fine with the compatibility layer

▪ Get the benefits of Libiio v1.x for free

▪ No rush to update it

©2022 Analog Devices, Inc. All rights reserved.16
28 September

2022

Thank you!

Code: github.com/analogdevicesinc/libiio

Support: ez.analog.com

Doc: wiki.analog.com

©2022 Analog Devices, Inc. All rights reserved.17
26 September

2022

