
GNU Radio 4.0
Overview and Block Migration

Outline

● Creating a Block
○ Development Methodology
○ Block API
○ Multiple Implementations
○ Python Blocks
○ History
○ Forecast

● Custom Buffers
○ Overview
○ Differences from GR 3.10

● Future Plans

Feedback Welcome!

At this stage in the development cycle, we are happy to entertain even large
changes to things

What is in dev-4.0 is currently a good starting point for GR 4.0.0, but now is the
time to make aggressive changes

Please submit PRs!!!!!

File issues starting with 4.0: …

Setting Up 4.0 Environment

1) Install prerequisites
2) Create prefix
3) Clone gnuradio --branch dev-4.0
4) Build/install

Tutorial Code can be found:

https://github.com/mormj/gr4-grcon22

https://github.com/mormj/gr4-grcon22

Exercise 1: Creating OOT with a block

Doing this: https://wiki.gnuradio.org/index.php?title=Creating_c%2B%2B_OOT_with_gr-modtool

… but with 4.0

1) Create OOT
cd $GR_PREFIX && source setup_env.sh
cd $GR_PREFIX/src
python3 $GR_PREFIX/src/gnuradio/utils/modtool/create_mod.py grcon22

2) Create Block
cd gr4-grcon22
python3 $GR_PREFIX/src/gnuradio/utils/modtool/create_block.py --templated multDivSelect

Now, let's look at folder and file structure …

https://wiki.gnuradio.org/index.php?title=Creating_c%2B%2B_OOT_with_gr-modtool

Block folder structure
(autogenerated) replaces CMakeLists.txt

Block implementation for cpu flavor of block

Our starting Point

The Block .yml

Modtool can remain simple because this file
is editable

The block properties

module: grcon22 # should not change

block: multDivSelect # should not change

label: Mult/Div Select # how does it show up in GRC

blocktype: sync_block # can also be "block"

Typekeys
● Use sigmf-like nomenclature for the types

(https://github.com/gnuradio/SigMF/blob/sigmf-v1.x/sigmf-spec.md#sigmf-dataset-format)
● Templating allows a block to have multiple possible instantiations with different port types - with a lot less

effort than that took in GR 3.x

typekeys:
 - id: T # Can be anything, but is referenced from port section
 type: class # how it gets instantiated in C++
 options: # For this block, let's just do float and complex
 - cf32
 - rf32

https://github.com/gnuradio/SigMF/blob/sigmf-v1.x/sigmf-spec.md#sigmf-dataset-format

Parameters

Parameters become some combination of constructor arguments and a PMT
object accessible thread-safe from the work function

parameters:
- id: select
 label: Select (M:true, D:false)
 dtype: bool
 settable: true # at runtime via callbacks

Ports

Ports describe the inputs and outputs of the block, and can be typed (fixed or templated) or
untyped or message ports

ports:
- domain: stream
 id: in
 direction: input
 type: typekeys/T
 multiplicity: '2'

- domain: stream
 id: out
 direction: output
 type: typekeys/T

Implementations

Specifies implementations/domains for blocks since each block can have
multiple variations in the same folder

Normally will be just cpu

implementations:
- id: cpu
- id: cuda

Now let's build

meson setup build --prefix=$GR_PREFIX --libdir=lib
cd build && ninja

…. lots of code generation

Taking a look at the auto-generated code in
build/blocklib/grcon22/multDivSelect

Let's see what we get for free …

multDivSelect.h

Setter and getter for our parameter
as well as a member PMT object

Constructor args lumped together in
struct - defaults would be handled here

Factory method that will create ptr to
desired implementation

multDivSelect.cc

Creation of ports according to yml
settings

Setters and Getters wrap base block
methods

Parameter object instantiation and
mapping

Template instantiations with suffixing

multDivSelect_cpu_gen.h
Hide some more of the boilerplate

multDivSelect_pybind.cc

This is perhaps the most exciting part for me … free python bindings

from gnuradio import grcon22
blk = grcon22.multDivSelect_ff(True)
blk.set_select(False)

grcon22_multDivSelect.block.yml

Goal at this point has been to minimally change GRC

Opted for a [4.0 block yml] → [GRC yml] conversion

We can have a "soft default" used in grc
with grc: default: in the parameter

The New Block API

The goal up to this point has been to get the block developer to the work()
method as quickly as possible, removing roadblocks along the way.

Constructor

Work Method

All inputs to work come in this struct ref

Work()

Getting our sample pointers

 auto in0 = wio.inputs()[0].items<T>(); // can also do ["in0"]
 auto in1 = wio.inputs()[1].items<T>();
 auto out = wio.outputs()[0].items<T>();

auto noutput_items = wio.outputs()[0].n_items;

Work()

Getting our block parameter

– Since the current value of selector lives in the base block as a PMT, we can
grab the current value here

auto sel = pmtf::get_as<bool>(*this->param_select);

For a non-settable parameter, we can just save the value into a private member
variable in the constructor

Name matches what we put in the .yml

Work()

Produce our output samples

 for (size_t index = 0; index < noutput_items; index++) {
 if (sel) { out[index] = in0[index] * in1[index]; }
 else{ out[index] = in0[index] / in1[index]; }
 }

 wio.produce_each(noutput_items);
 return work_return_t::OK;

Produce/Consume must always be called

Write a QA test

Not currently a part of the modtool scripts, but easy to add

1) Create blocklib/grcon22/test/qa_multDivSelect.py (copy from github)
2) Add the test to meson.build

test('Mult Div Select', py3, args : files('qa_multDivSelect.py'), env: TEST_ENV)

ninja

ninja test

Review

1) Created OOT module with script
2) Created block with script
3) Updated .yml file
4) Implemented work function
5) Added QA test
6) Ran example in GRC

Back to the original vision

Vision for GNU Radio 4.0

26

Modular CPU Runtime

● Scheduler as plugin
● Application-specific

schedulers

Straightforward implementation of (distributed) SDR
systems that make efficient use of the platform and

its accelerators

Distributed DSP

● Setup and manage
flowgraphs that span
multiple nodes

Heterogeneous
Architectures

● Seamless integration
of accelerators (e.g.,
FPGAs, GPUs, DSPs,
SoCs)

How does this get us to our vision?

In the exercise we really only covered the "straightforward implementation" part
of things

Modular CPU Runtime
- Improved CPU scheduler with modular architecture
- Can show performance gains - e.g. by not limiting to TPB

Heterogenous Architectures
- Custom buffers - take a step beyond 3.10

Distributed DSP
- Because of modular runtime, can create more complex flowgraphs that

span multiple compute nodes but controlled from a single node

Custom Buffers

● 3.10 Feature introduced by David Sorber at Black Lynx via the DARPA SDR 4.0
project

○ Final status given last year at GRCon
○ https://www.youtube.com/watch?v=VO1zMXowezg

● Device compatible buffer structure (single mapped)
○ https://wiki.gnuradio.org/index.php/Custom_Buffers

● Data able to remain in accelerator memory
○ Streamlined data movement

Prior to 3.10 using custom buffers, each
connection between CUDA enabled blocks
would require ingress/egress to/from device
memory (expensive)

https://www.youtube.com/watch?v=VO1zMXowezg
https://wiki.gnuradio.org/index.php/Custom_Buffers

Custom Buffers

Allow you to specify where the data resides for the buffer that lives in
between ports
By default it is the GR double mapped circular buffers (vmcircbuf)

Graphically represented by "domains" in GRC

Bottom Line: In work() we can assume that buffers represent device memory

Custom Buffers

Some key differences between CB for 4.0

1) NOT built into the block
a) This was a GR 3.x io_signature API limitation
b) Assumptions made about ingress/egress that covers most use cases

2) Can specify on each *edge*
a) More verbose, but more flexible - e.g. different CUDA mem types.

3) Buffer pointer passed into work() via work_io struct
a) Allows info about the buffer in use to be communicated via the work method that can't be

achieved with raw pointers

tb.connect(src, op).set_custom_buffer(gr.buffer_cuda_properties.make(gr.buffer_cuda_type.H2D))

Custom Buffers

Need to create derived:

- buffer
- buffer_reader
- buffer_properties

Not going to create a fresh one in this workshop, but we can look at / use:

buffer_cuda_sm.h

Exercise 2: Add CUDA implementation

Prereqs - CUDA installed on your system or via docker + NVIDIA HW

meson configure with enable_cuda

gr built with enable_cuda=true

1) cd build && meson configure ../build -Denable_cuda=true
2) Add CUSP as a subproject
3) uncomment cuda implementation in yml
4) create multDivSelect_cuda.cc and multDivSelect_cuda.h

multDivSelect_cuda.h

Rather than writing CUDA kernels from
scratch, use the CUSP library (homegrown
gnuradio volk-like kernel library

multDivSelect_cuda.cc

Block work requires a synchronization as
the scheduler expects sample processing to
be completed when work returns

Good example of where a custom scheduler
might increase efficiency

Running from GRC

Good example of where a custom scheduler might increase efficiency

Switching the "implementation" field in GRC
changes the domain and causes rendering
to use CUDA implementation and set up
custom buffers

Rendered Flowgraph

Sets the custom buffer of the generated edge to the desired buffer_properties
object

In this case, we have (or GRC has) explicitly specified H2D, D2D, or D2H

Also, it's as easy as switching the implementation at instantiation

Exercise 3: Create a Python Block

Let's make the same block again, but implemented in Python

Two mechanisms for creating python blocks:

1) Derive from block/sync_block in python_block.h
a) "from scratch" python block
b) detached from yaml generation methodology
c) GRC would have to be manually created

2) Derive from multDivSelect<T>
a) uses yaml as a starting point
b) still requires a few manual steps that should be automated

"From Scratch" python block inheritance

gr::block

gr::sync_block

gr::python_sync_
block

→gr.sync_block

gr::python_block
→gr.block

Custom Sync
Block in python

Custom general
block in python

From scratch python block

Add block directly to a new qa test

Create the class

This looks almost exactly like GR 3.X python
blocks, except we use add_port instead of
io_signature

Our setters and getters must be manually
specified

… and test

Extending the existing block

Expand our list of implementations to
include a "numpy" with language set to
python

Can also do something similar with a cuda
domain implementation in python

Extended python block inheritance

gr::block

gr::sync_block

gr::grcon22::multDi
vSelect<T>

gnuradio.grcon22.
numpy.multDivSelect

This inheritance should give all the 4.0 niceties

gr::grcon22::multDiv
Select<T>_pyshell

has-a

ref back to
parent

Add the numpy implementation as a directory

Copy from add.py in the main gnuradio dev-4.0 tree

meson.build is boilerplate and should be
automatically generated

Boilerplate

A bit more boilerplate here that also *could* be automated

need to tie in, e.g.
from gnuradio import
grcon22.numpy.mulDivSel_ff

The class extending the base block

Any constructor parameters from the yaml are passed in as kwargs via the
pyshell

blk is a reference back to the pyshell - access to base block methods

pyshell is a generic autogenerated shell for any python implementation

Work()

Same as previous
implementation except we
now have access to block
parameters through
self._blk

Convenience methods for
getting the numpy arrays
from the work_io struct

QA test

GRC

Just set NUMPY as implementation and it will use what we just coded in python

Additional Block API Considerations

Forecasting

The GR3 forecasting mechanism is useful for informing the scheduler the
appropriate buffer sizes to provide

It is however locked into a singular scheduling paradigm (backpressure based).
(See tagged stream blocks - forward output to input calculation)

Since scheduling is becoming modular, we want to be flexible in the mechanism
exposed from the block API to the scheduler

Instead, return from the work function if the provided buffers are not sufficient

Still open discussion on whether a `check_work` method would be appropriate

History

History() in GR3 is a useful feature for a subset of blocks that maintain access to
the previous N-1 samples

However, it overly complicates the scheduler, and since it only affects a small
percentage of blocks, we can deal with it in the block itself

tl;dr - don't consume all the samples

Forecasting/History in fir_filter block

We ensure that the
output provided is
greater than the input
plus the internally
maintained history
variable

noutput_items will be
less than the available
inputs

But we only consume
noutput_items on
both input and output

Message Ports

Every parameter can be
updated through
`param_update` message
port - get this for free

Message Ports

For custom message ports, driven through yaml workflow

With a message port defined the yaml, block
will expect a handle_{id} for each block
implementation

Message Port Performance

<insert graph showing benchmarking>

Makes PDU based flowgraph much more feasible

In the scheduler, uses the same mechanism as for stream buffer updates

Part of speedup is reduced reliance on PMT identifiers, part is improved PMT
design

Creating Blocks "in-tree"

`--intree` flag with `create_block.py` script

e.g. to create a block in analog

cd blocklib/analog

create_block.py … --intree

Moving Forward -
getting to a solid 4.0.0

Moving Forward

Biggest missing items:

- Visualization Blocks
- e.g. qtgui refresh/replacement

- Radio Blocks (Soapy/UHD/IIO)
- Not that hard but want to keep generic/consistent
- https://github.com/gnuradio/gnuradio/pull/6028

- Documentation
- Since c++ .h files not the primary entrypoint, need another solution
- Tied in with .yaml and organized →readthedocs.io or something

- Begin Port Block Library
- If everyone is happy with current API …

https://github.com/gnuradio/gnuradio/pull/6028

Moving Forward

Items that require fixing/revisiting

- Generalized Callbacks tied in with yaml
- Evaluate dependencies
- Better GRC Integration

- Move to QT GRC?
- …

