
A Flexible Architecture for
Monitoring Public Safety
Communications using

GNU Radio, RFNoC, and
Python
Aaron Rossetto

About Me

 Former NI/Ettus employee and UHD maintainer

 GRCon presentations

 Exploring RFNoC with the UHD Python API

 Meet the Family: RFNoC Blocks in UHD

 Amateur Radio Meetup: A Look at Project 25

Digital Radio

 Long-time SDR and public safety monitoring

enthusiast

https://www.youtube.com/watch?v=fbcxm7f-Tj0
https://www.youtube.com/watch?v=4XXqk0yGvCI
https://www.youtube.com/watch?v=9_Bb7g3_-7E&t=4s

Public Safety Monitoring

Listening to the radio communications of first responders, local,
state, and federal agencies, and other governmental and
community organizations as they respond to emergent
situations, and the equipment and techniques used to do so

Public Safety Monitoring

Scanners

Scanners

Scanners

Computer-Based Solutions

Gaming Platform-Based Solutions

https://old.reddit.com/r/RTLSDR/comments/xf9v16/steam_deck_portable_trunking_s

etup_using_sdrtrunk/

https://old.reddit.com/r/RTLSDR/comments/xf9v16/steam_deck_portable_trunking_setup_using_sdrtrunk/

scanner

Monitoring Option Deficiencies

Scanners

 Made for broad audiences and

common use cases

 No or only limited customization
possible

 Typically have a single tuner

 Inscrutable UI/UX design

choices

Computer-Based Scanners

 Often difficult for novices to
use/configure

 Require dedicated compute

resources

 Customization possible with

specific knowledge and/or

toolset

 Inscrutable UI/UX design
choices

DIY Scanner Goals

 Flexibility above all

 Front end flexibility (radio, channel selection, demodulation)

 Back end flexibility (the ‘business logic’)

 Leverage modern SDR techniques/hardware and software

packages

 Simplify back end development (the ‘user experience’ bits)

 Decouple from and abstract away front end

 Insulate implementer as much as possible from communications

protocol

 Accelerate development via interpreted language and a rich library

ecosystem for building monitoring applications

Introducing gr-scanner!

A GNU Radio module to simplify the creation of customized
listener-oriented monitoring solutions focusing on P25
trunked public safety radio systems

gr-scanner Overview

 Front end

 GNU Radio flowgraph for signal acquisition, channel selection, 4FSK

demodulation, and P25 message framing

 Designed to support multiple simultaneous channel acquisition (e.g., a

control channel and a separate traffic channel)

 Back end

 Python module implementing the ‘business logic’ of the monitoring

application

 Designed to be decoupled from GNU Radio and front end flowgraph

 Data exchange accomplished via lingua franca of JSON messages

Credit Where Credit Is Due

• Credit to OP25 project authors and contributors from
which I based much of the P25 framer code
• gr-op25 uses many similar techniques

• Supports more than P25 phase 1

Max H. Parke, KA1RBI Pavel Yazev
Jonathan Naylor, G4KLX Hard Consulting Corporation
Michael Ossmann <+YOU OR YOUR COMPANY+>

• And all the other contributors to GR, UHD, cmake, etc. 👍

RFNoC Domain GNU Radio Domain

gr-scanner modules

GNU Radio Domain

Front End Interface

 GNU Radio Python block connecting front

and back ends

 Loads Python module and instantiates named

class with given parameters

 Accepts PDUs from input ports and proxies to
receive_pdu() on class

 Outputs PDUs on output ports from back end
via send_pdu() method

 Maps inN and outN ports to names provided

in input and output channel lists

Front End Interface in P25 Scanner

Front End

PDUs (JSON strings)
from P25 framer #1

PDUs (JSON strings)
from P25 framer #2 tc_pdus

cc_pdus

radio_freq

radio_gain

cc_offset

tc_offset

PDUs (floats) to RFNoC
Rx Radio block

PDUs (floats) to RFNoC
DDC block

back_end_class.receive_pdu(‘cc_pdus’,
{‘p25_du’: {‘nac’: ‘0x137’, ‘duid’: ‘0x7’,
‘tsbk’: ‘90005235FAE30A5761E1C01264’,
‘ok’: 1}}

send_pdu_fn(‘tc_offset’,
{‘type’: ‘float’,
‘value’: ‘-161500’})

Back End: P25 Scanner

 Python module; no GR dependencies

 Base class handling common P25 trunked
system decoding tasks

 Configures front end radio for trunked system
reception

 Interprets trunked control channel messages
and calls user-defined functions

 Decodes digital voice packets on traffic
channels to PCM data

 Parses trunked system data files from Radio
Reference database and provides access via
dictionaries

 Intended to be subclassed to implement
application-specific behaviors

TS
B

K
s fro

m
 c

o
n

tro
l

c
h

a
n

n
e

l

LD
U

s fro
m

 tra
ffic

c

h
a

n
n

e
l

Tu
n

in
g

 in
stru

c
tio

n
s

to
 ra

d
io

P25 Scanner

P25 Scanner

subclass (application-

specific)

Trunked
System
Data

Site info

Talkgroup info

receive_pdu() send_pdu()

OSP_...()

C
C

m

e
ssa

g
e

s

P
C

M
 v

o
ic

e

d
a

ta

voice_pcm_data()

tune_traffic_
channel()

Tr
a

ff
ic

c
h

a
n

n
e

l

se
le

c
ti
o

n self.sites
self.tgs
self.idents

Back End: P25 Decoder Ring

 Map of TSBK messages to field

names and decoders

 List of byte offset, masks, and shifts for

each field, or lambda with decoding

code

 Method with same name as

message called on subclass with

fields as parameters

def OSP_GRP_V_CHANNEL_GRANT(self,
service_opts, freq, group,
source):

...

Back End: IMBE Audio Decoder

 LDU1/2 P25 DUs on traffic channel port sent to IMBE decoder

 Fixed point implementation by Pavel Yazev

 Decoder is standalone shared library built alongside gr-scanner

 Calls subclass voice_pcm_data() with raw 16-bit PCM data at 8 kHz

Back End: Out Of Process Proxy

 Spawns child process and loads specified module and instantiates

named class

 Creates pipes for IPC with proxy

 Provides class with port names and input/output pipe handles

 Calls class main_loop()

 Serializes receive_pdu() and send_pdu() calls via pipes

 Isolates back end from GR Python process

Example: Simple Web Scanner

• PoC of mobile-oriented web-based P25
scanner written in Python
• View real-time site activity with users

• Monitor audio

• Lock out or prioritize specific talkgroups

• Visual feedback of signal quality

• Playground to try out UI/UX ideas and refine
framework

Web Scanner

Architecture

GNU Radio process

Front end
Front end

interface
PDUs

scanner.

p25_scanner.

scanner_oop_w

s
JS

O
N

Scanner server process

scanner.

out_of_process_proxy scanner.p25_scanner.

scanner_oop_ws

IPC

TCP/8000

TCP/8001

Trunked system
metadata

WebSockets

Python

http.server

process

HTTP

spawns

spawns
Events

PCM audio stream

Static presentation data

Demo

How To Play Along

 https://github.com/meowdul8/gr-scanner

 Fork it, improve it, send me your PRs!

 Do cool things!

 Potential areas of improvement/feature additions:

 TLC for the overall repo

 Flowgraphs for other SDRs out of the box

 Support for other trunked system types

 Examples for different applications

 Laugh at, then improve, my Javascript code

 etc. etc. etc.

https://github.com/meowdul8/gr-scanner

Thank you!

