

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps

Real-Time with Multi-Core General Purpose Processor (GRCON 2022)

David T. Miller DAVE.TODD.MILLER@GMAIL.COM

Ashburn, VA 20147 USA

Abstract

This paper presents a GNU Radio

Modulator/Demodulator (Modem) design and an

associated test activity that demonstrates a GNU

Radio modem can operate at 15.0 Mbps

Real-Time with Quadrature Phase Shift Keying

(QPSK), with GNU Radio version 3.10, and with

a multi-core (8-core) General Purpose Processor

(GPP) inside a relatively low cost Personal

Computer (PC). The Modem demodulator design

achieves the high date rate with a single GNU

Radio flowgraph and without a Field

Programmable Gate Array (FPGA) or Graphics

Processor Unit (GPU). Specifically, the Modem

demodulator design achieves the high data rate by

breaking the incoming I/Q sample stream from a

LimeSDR-mini into three “chunk” streams. Each

chunk stream then flows to a separate Symbol

Synchronizer (symbol synchronization) and

Costas Loop (carrier synchronization) chain and

each chain uses a separate GPP core. The GNU

Radio Modem demodulator then “stitches” the

original transmitted single stream back together

by only using the frame Acquisition

Synchronization Marker (ASM) and the known

frame length of each frame.

1. Introduction

The feasibility of greatly expanding the real-time data rate

capability of a GNU Radio modem at a reasonable cost

now exists because of the following two trends in the

Personal Computer (PC) and Server market:

1. A continuous improvement in the number of

General Purpose Processor (GPP) cores in a

single PC or Server.

2. A continuous lowering of costs for a PC or Server

with multi-core GPPs up to at least 64 cores.

Proceedings of the 12th GNU Radio Conference,

Copyright 2022 by the author.

Moore’s Law on increasing the speeds of an individual

single core GPP has mostly stagnated for at least the last

10 years, but the PC/Server industry trend to expand the

number of cores in a GPP provides a path forward still for

applications like GNU Radio to greatly expand its

performance speeds.

Demonstrating via actual testing that a GNU Radio

Software Defined Radio (SDR) Demodulator can achieve

15.0 Mbps by using only GPP cores in parallel inside an

8-core GPP PC may unlock the potential for new GNU

Radio High Data Rate (HDR) applications. For example,

the design documented in this paper should be scalable to

much higher data rates with more cores. It could be

possible to achieve real-time data rates up to 50 Mbps or

even possibly 100 Mbps in real-time with a 32-48 core

PC/server, GNU Radio, and a ≥100 Megasample per

second “dongle” unit with a 10 Gigabit Ethernet interface.

Field Programmable Gate Array (FPGA) boards or

Graphics Processor Unit (GPU) devices are not needed

with this HDR parallel GPP multi-core approach.

One could even consider the feasibility of deploying GNU

Radio on cloud servers with the digital complex I/Q stream

originating from a ground station “hardware dongle” at a

different geographic location.

A feasibility only approach for conducting Binary Phase

Shift Keying (BPSK) at 10.0 Mbps with a multi-core GPP

was discussed and presented at the last GNU Radio

Conference in September 2021 (Miller, 2021). However,

the follow-on approach in this paper improves upon that

design used during the BPSK feasibility demonstration in

(Miller, 2021). The design and demonstration documented

in this paper and the associated flowgraphs and code on

github.com (gr-HighDataRate_Modem) can provide one

potential path forward for greatly increasing the data rate

performance of a GNU Radio modem by using multicores

of a GPP in parallel.

2. Demonstration Test Objective

The primary objective of this demonstration test activity is

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps Real-Time with

Multi-Core General Purpose Processor (GRCON 2022)

to show that one can develop a practical GNU Radio HDR

SDR Demodulator that can operate at a data rate of

15.0 Mbps in realtime with a relatively low cost 8-core

GPP PC.

3. Scope of Demonstration Test

For Satellite communications, the Quadrature Phase Shift

Keying (QPSK) modulation waveform is used extensively.

Therefore, the author conducted a QPSK test case at

15.0 Mbps.

4. GNU Radio SDR Design

This section describes the details of the GNU Radio SDR

design and implementation. However, please also refer to

gr-HighDataRate_Modem on github.com for the required

Out-Of-Tree (OOT) Blocks/Code, example flowgraphs,

and a detailed Design Document for additional low level

details.

The SDR design consists of an inexpensive Lenova

IdeaPad 5 laptop (≈$650.00 in CY2021) containing an

Advanced Micro Devices (AMD) Ryzen 7-4700U 8-core

GPP, the free open source Linux/Ubuntu operating system

(Version 20.04), the free open source GNU Radio software

(Version 3.10), and an inexpensive (<$200.00 in CY 2021)

Commercial Off-The-Shelf (COTS) LimeSDR-Mini

hardware transmit/receive dongle. The LimeSDR-Mini has

a Universal Serial Bus (USB) 3.0 interface on one side for

the connection to the Lenova laptop and about a

30 Megasample per second capability. On its other side,

the LimeSDR-Mini dongle has 50 ohm SubMiniature

version A (SMA) transmit and receive Radio Frequency

(RF) interfaces.

Please refer to the following for a detailed description of

the LimeSDR-Mini hardware dongle functions and design:

https://limemicro.com/products/boards/limesdr-mini

The design in this paper eliminates the need for the frame

counter in the high data rate BPSK feasibility design of

(Miller, 2021). This new improved design can now support

generic types of link framing by only requiring knowledge

of the frame length and frame Acquisition Synchronization

Marker (ASM) to stitch the frames back together again

after they pass through the parallel synchronization chains.

Figure 1 depicts the GNU Radio Companion (GRC)

Flowgraph Graphical User Interface (GUI) for the QPSK

demodulator design and test demonstration for a

continuous stream of received frames with a constant frame

length of 4192 bits including a 32 bit ASM. Specifically,

the design includes using the Consultative Committee for

Space Data Systems (CCSDS) 32-bit ASM pattern

(1ACFFC1D in hexadecimal) for the frame ASM.

The Demodulator Flowgraph in Figure 1 consists of three

main parts:

1. Demodulator Front-End

2. Demodulator Parallel Synchronization Chains

3. Demodulator Back-End

The design consists of mostly the GNU Radio blocks that

were already available in the GNU Radio Block In-Tree

library except for the final frame extraction and stitching

blocks in the Demodulator Back-End:

“TAG_CHUNKpreamble” block, “Chunk_ExtractQPSK”

block, “Tag_FrameASM” block, Extract_Frame” block,

and “Resolve_Phase” block.

The design replaces the frame counter to stitch the frames

back together as used in (Miller, 2021) by using a new

approach that includes adding a “Chunk Preamble” to the

front of each chunk before the chunk enters one of the

parallel synchronization chains. The demodulator can now

use the added chunk preamble along with the known frame

ASM and known frame length without a frame counter to

recover the original frame data stream that the Radio

Frequency (RF) transmitting source generated, modulated,

and radiated.

(Grayver et al., 2020) introduced the term “chunk” in

detail. A single chunk is one continuous stream of samples

that enters a single symbol synchronizer block without a

discontinuity: 82,000 samples as seen in the Demodulator

Front-End of the flowgraph in Figure 1 (Three “Keep M in

N” blocks with M set to 82,000).

4.1. Demodulator Front-End Functions and Data Flows

The Demodulator Front-End (see Figure 1) breaks the

incoming single serial complex I/Q channel sample stream

from the LimeSDR-Mini into parallel overlapping chunk

streams and also adds a complex I/Q fixed pattern 1524

sample “Chunk Preamble” to the front of each individual

chunk in each chunk stream before the chunk streams enter

the next part of the Demodulator Flowgraph which is the

Demodulator “Parallel Synchronization Chains” (see

Figure 1). Each Synchronization Chain consists of a

Symbol Synchronizer Block, Costas Loop Block, Complex

to Float Block, Interleave Block, and Binary Slicer Block.

https://limemicro.com/products/boards/limesdr-mini

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps Real-Time with

Multi-Core General Purpose Processor (GRCON 2022)

Figure 1: GNU Radio Companion GUI Flowgraph for QPSK Test Case (Available on gr-HighDataRate_Modem)

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps Real-Time with

Multi-Core General Purpose Processor (GRCON 2022)

Figure 2 depicts the Demodulator Front-End functional

chunk creation for each chain in detail. Figure 2

functionally depicts the 12,000 sample overlap of the

chunk chains (202, 206, and 209 in Figure 2) so that well

more than one frame of overlap at the beginning and end

of each chunk occurs relative to an adjacent chuck that will

be on a different parallel synchronization chain. An overlap

bit length beyond just one 4192 bit frame was also used

because the Symbol Synchronizer blocks and Costas Loop

blocks need to re-sync for each new chunk due to the

discontinuities between chunks on each chunk chain. Also,

extra overlap is required for the variation in the transmitted

symbol clock rate. For example, the symbols per 82,000

sample chunk can vary randomly by a few symbols from

chunk to chunk depending on the clock stability of the

transmitter relative to the LimeSDR-Mini dongle clock.

The design also uses a large overlap well beyond one frame

so that an implementer can add support for different frame

lengths in the future without the need to change the

flowgraph blocks significantly.

Figure 3 depicts how the Demodulator Front-End

functionally adds a “Chunk Preamble” to each 82000

sample chunk. The design uses the Chunk Preamble as a

part of the frame stitching process in the Demodulator

Back-End after the chunks pass through the three parallel

Symbol Synchronizer and Costas Loop chains in the

“Parallel Synchronization Chains” part of the

Demodulator.

Specifically, this QPSK demodulator design adds the 1524

sample “Chunk Preamble” from a file source block in the

Demodulator Front-End to the front of each 82000 sample

chunk by using a “Stream Mux” block before the chunks

enter the input of one of the Parallel Synchronization

Chains as Figure 3 functionally depicts.

The added fixed “Chunk Preamble” stored in a prepared

file starts with a complex I/Q pattern of 960 samples

(corresponding to 960 bits based on 2 samples/symbol and

2 bits per symbol for QPSK) as follows: “1+j1, 1+j1, -1-j1,

-1-j1, 1+j1, 1+j1, -1-j1, -1-j1, 1+j1, 1+j1, -1-j1, -1-j1,,

1+j1, 1+j1, -1-j1, -1-j1, 1+j1, 1+j1, -1-j1, -1-j1”. The next

part of the chunk preamble is the 64 sample Chunk

Preamble Marker (64 bits based on 2 samples/symbol and

2 bits/symbol) also in I/Q complex format and is a

randomized pattern in bits for later chunk synchronization

after the chunk streams exit the Parallel Synchronization

Chains. One can use any 64 bit pattern (64 complex

samples for QPSK) with quality randomization

characteristics for use as a synchronization marker for the

“Chunk Preamble Marker”. Following the preamble

marker is the final part of the preamble which is a 500 zeros

sample sequence also in complex format (0+j0 for each

sample). The pre-created “Chunk Preamble” file for the file

source in the Demodulator Front-End of Figure 1 is

available on gr-HighDataRate_Modem located on

github.com.

The “Chunk Preamble” samples before and after the chunk

preamble marker assist with later symbol synchronization

and carrier synchronization that is required for each new

chunk and preamble marker. Each Parallel

Synchronization Chain must conduct two

re-synchronization processes for each passing 82,000

sample chunk and its preamble marker (synchronize on the

preamble marker and then synchronize on the later chunk

samples). This chunk preamble approach eliminates the

need for a frame counter to “stitch” the original transmitted

frame stream back together as discussed in (Miller, 2021).

Each Symbol Synchronizer block and each Costas Loop

block was placed onto a dedicated single GPP core.

The final step for the Demodulator Front-End is to send the

overlapping chunk streams with preambles to the

Demodulator “Parallel Synchronization Chains”.

4.2. Demodulator Parallel Synchronization Chains

Functions and Data Flows

The Demodulator “Parallel Synchronization Chains”

conduct the processing intensive synchronization functions

using parallel synchronization chains and GPP cores. The

input of the Demodulator Parallel Synchronization Chains

is a “complex” type. The output of the Demodulator

Parallel Synchronization Chains is a “char” type.

4.3. Demodulator Back-End Functions and Data Flows

After the three Parallel Synchronization Chains, Figure 1

depicts how the Demodulator Back-End multiplexes the

three parallel chunk streams (now bits not complex I/Q

samples) into a final single stream of chunks in original

order by using the Preamble Marker of each chunk, the

“TAG_CHUNKpreamble” and “Chunk_ExtractQPSK”

blocks, and a “Stream Mux” block. The

“TAG_CHUNKpreamble” block in Figure 1 is an OOT

block, but it is just a modified version of the “Correlate

Access Code – Tag” In-Tree block created to include tags

for all four possible QPSK access code (Chunk Preamble

Marker) phases: 45°, 135°, 225°, and 315°.

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps Real-Time with

Multi-Core General Purpose Processor (GRCON 2022)

Figure 2: Demodulator Front-End Functional: Chunks for Each Symbol Synchronizer Created

Figure 3: Demodulator Front-End Functional: Add Chunk Preamble to Each Chunk

Figure 4 functionally depicts the chunk multiplexing

process. Then, the now single stream of chunk bits flows

from the output of Figure 4 onto the final part of the

Demodulator Back-End and the final part of the

Demodulator where the Demodulator recovers the exact

original frame stream that the test modulator transmitted.

The Demodulator Back-End “Keep M in N” block (Keep

74.27k of 82.51k) in the flowgraph performs the signal

conditioning operation to remove the beginning overlap

bits of each chunk except for the last overlap bits of length

about 1.03 times the frame length. The next signal

conditioning step is to tag each frame ASM

(“Tag_FrameASM” Block). The “Tag_FrameASM” block

in Figure 1 is an OOT block, but it is just a modified

version of the “Correlate Access Code – Tag” In-Tree

block created to include tags for all 4 possible QPSK access

code (ASM) phases: 45°, 135°, 225°, and 315°. Figure 5

functionally depicts how the design extracts each frame

from the now serial stream of chunks by using the

“Extract_Frame” block in Figure 1 to recover the originally

transmitted frame stream without extra bits, without extra

frames, and without missing bits/frames. The

“Extract_Frame” block passes a correct valid frame only

when the frame has a correct frame length of 4192 bits as

measured between the start of the frame ASM and the start

of the next frame ASM ([505],[506] and [510] of Figure 5).

When the distance between the start of the frame ASM and

the next frame ASM is greater than the correct known

frame length because of a chunk discontinuity/overlap,

then the “Extract_Frame” block discards the frame ([511]

of Figure 5). A duplicate frame also occurs occasionally

because of the chunk overlap. That duplicate frame and the

short frame that precedes it are identified by the incorrect

short frame between two ASMs ([507] and [508] of Figure

5 depicts). Then, the “Extract_Frame” block discards both

 1st CHUNK for CHAIN #1 (210,000 SAMPLES)

INCOMING CONTINUOUS STREAM OF COMPLEX I/Q SAMPLES FROM DIGITAL DOWNCONVERTER
 200

 CHUNK CHAIN #1
(KEEP 82,000 of 210,000
 SAMPLES)

 1st CHUNK for CHAIN #2 (210,000 SAMPLES)
 207

 CHUNK CHAIN #2
 (KEEP 82,000 of
210,000 SAMPLES)

Over
-lap
206

 1st CHUNK for CHAIN #3 (210,000 SAMPLES)

CHUNK CHAIN #3
(KEEP 82000 of 210000

SAMPLES)

Over
-lap
209

 2nd CHUNK for CHAIN #1
 (210,000 SAMPLES)

 SECOND CHUNK of
CHAIN #1 (KEEP 82,000
of 210,000 SAMPLES)

Over-
lap
202

From
LimeSDR

-Mini

Each Overlap is
12,000 Samples

Skip Head
70,000 Samples

Chunk Creation
for First Chain

Chunk Creation
for Second Chain
Chunk Creation
for Third Chain

CHUNK CHAIN BLOCK

(82,000 SAMPLES)

CHUNK
PREAMBLE

(1524

SAMPLES)
STREAM

MULTIPLEXER

CHUNK
PREAMBLE

(1524

SAMPLES)

CHUNK CHAIN BLOCK

(82,000 SAMPLES)

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps Real-Time with

Multi-Core General Purpose Processor (GRCON 2022)

Figure 4: Demodulator Back-End Functional: Multiplex Parallel Chain Chunk Streams

Figure 5: Demodulator Back-End Functional: Extract Original Transmitted Frame Stream

frames even though one of the frames (duplicate frame) has

the correct frame length. The C++ “memcpy” function is

used for speed in the “Extract_Frame” block.

Then the OOT “Resolve_Phase” block in Figure 1 uses the

ASM to resolve the phase ambiguity: 45°, 135°, 225°, and

315°. The block rotates the bits in each frame depending

on the ASM phase rotation of each frame. The output of

the “Resolve_Phase” block is the original continuous

frame data stream that the Radio Frequency (RF)

transmitting source (Test Modulator) generated,

modulated, and radiated.

For many of the OOT blocks, the GNU Radio outputs for

each GNU Radio Scheduler “Work Call” were set at large

minimum values using the “set_output_multiple()”

function in the block code in order to provide long

minimum input/output blocks during each call to the

“Work” function. Specifically, the design code sets the

minimum multiple value for the noutput_items parameter

in order to guarantee each GNU Radio Scheduler “Work

Call” processes at least 15-20 frames (One frame is 4192

bits in length). The long length blocks improve GNU Radio

flowgraph speed and performance at high data rates.

One can review the exact code for each OOT block at

gr-HighDataRate_Modem.

4.4. Test Modulator

When running the transmit/receive loops in Figure 1, the

transmit Test Modulator signal originates from a prepared

modulation file so that the modulator running at

15.0 Megasamples per second (Msps) only requires one

GPP core when testing the GNU Radio Demodulator.

Figure 6 depicts the creation of the modulator file in the

initial baseband character format (4160 bits for each frame

plus a 64 bit ASM that the Figure 7 flowgraphs will convert

to a 32 bit ASM). The included header frame counter is

available for post-test bit and frame error analysis.

Figure 7 depicts the last three modulator file creation

flowgraphs that sequentially convert the baseband frame

stream from the Figure 6 output into the final complex

QPSK frame stream (with the 32 bit ASM) required by the

Test Modulator File Source in Figure 1. The design

includes a frame size of 4192 bits in length including a

32 bit ASM and 64 bit header after the ASM (with the

header frame counter used for post-test analysis).

(MULTIPLEX CHUNKS AND REMOVE PREAMBLE)

CHUNK
PRE-

AMBLE
1524
BITS

CHUNK FROM CHAIN #1
 Bits)

PARALLEL SYMBOL
SYNCHRONIZER -

COSTAS LOOP CHAIN
#1

CHUNK FROM CHAIN #3
 Bits)

CHUNK FROM CHAIN #2
 Bits)

CHUNK FROM CHAIN #1
 Bits)

CHUNK
PRE-

AMBLE
1524
Bits

CHUNK FROM CHAIN #2
 Bits)

CHUNK
PRE-

AMBLE
1524
Bits

CHUNK FROM CHAIN #3
 Bits)

PARELLEL SYMBOL
SYNCHRONIZER -

COSTAS LOOP CHAIN
#2

PARALLEL SYMBOL
SYNCHRONIZER -

COSTAS LOOP CHAIN
#3

CHUNK CHAIN
MULTIPLEX &

REMOVE
PREAMBLE

EXCEPT LAST
500 ZEROS

AND FIRST 10
BITS OF

PREAMBLE OF
FOLLOWING

CHUNK

RECOVER
ORIGINAL
TRANSMIT

SOURCE
FRAME

STREAM

 Extract_Frame Block (Functional Data Flow)

 CHUNK FROM CHAIN #1
 BITS)

 CHUNK FROM CHAIN #2
 BITS)

 CHUNK FROM CHAIN #3
 BITS)

···········

WRONG
FRAME

LENGTH SO
DISCARD

CORRECT
FRAME

LENGTH SO
EXTRACT FOR

OUTPUT

FRAME ASM STARTS

OUTPUT OF
FLOWGRAPH:

ORIGINAL
TRANSMITTED

FRAME
STREAM

······ ·····
····· ····

FRAME ASM STARTS

OUTPUT
FROM

 STREAM
MUX
BLOCK505

506

508507 510 511

 KEEP M in N
BLOCK and

 Tag_FrameASM
BLOCK

(SIGNAL
CONDITIONING)

RESOLVE PHASE
AMBIGUITY

 Resolve_Phase
BLOCK)

SHORT INCORRECT
FRAME LENGTH SO
DISCARD AND ALSO

DISCARD FOLLOWING
DUPLICATE FRAME

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps Real-Time with

Multi-Core General Purpose Processor (GRCON 2022)

Figure 6: GNU Radio Companion GUI Flowgraph for Test Modulator File Baseband Creation

Figure 7: GNU Radio Companion GUI Flowgraph for Modulator File Complex Creation with 32 Bit ASM

 Remove 64 Bit ASM from Each Frame Generated in Figure 6

 Add CCSDS 32 Bit ASM to Each Frame

 Generate Modulator Complex QPSK File for Figure 1 Test Modulator File Source Block

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps Real-Time with

Multi-Core General Purpose Processor (GRCON 2022)

5. Demonstration Test Approach

The author conducted a 15.0 Mbps QPSK demonstration.

The driving GNU Radio block parameter settings for the

QPSK test case were as follows:

• RF Center Frequency: 80.0 MHz

• Sample Rate: 15.0 MegaSamples per Second

• Symbol Sync Input: 2.0 Samples per Symbol

• Symbol Sync Output: 1.0 Sample per Symbol

• Costas Loop Order: 4

The demonstration included using the “affinity” setting for

each block in order to efficiently use the GPP 8-cores.

Table 1 lists the affinity settings for each block (each block

was assigned to a specific GPP core) during the test.

Table 1: GNU Radio Block Affinity Settings for Test

Flowgraph Block Core/Affinity

Test Modulator File Source Block 1

LimeSuite Source (Receiver) 1

LimeSuite Sink (Modulator) 1

Demodulator Front-End Skip and

Multiplier Blocks
2

Demodulator Front-End “Keep M in

N” and “Stream Mux” Blocks
2

Demodulator Front-End File Source

(Preamble) Block
2

Symbol Synchronizer/Costas Loop

(Chunk Chain #1):
4

Symbol Synchronizer/Costas Loop

(Chunk Chain #2)
5

Symbol Synchronizer/Costas Loop

(Chunk Chain #3)
6

“Complex To Float” Blocks 4,5,6

“Binary Slicer” and “Interleave”

Blocks
7

“TAG_CHUNKpreamble” Blocks 7

“Chunk_ExtractQPSK” Blocks 7

Demodulator Back-End “Stream Mux”

Block
3

Demodulator Back-End “Keep M in

N” Block
3

“Tag_FrameASM” Block 3

“Extract_Frame” Block 3

“Resolve_Phase” Block 3

Demodulator Back-End File Sink

Block
3

Figure 8 depicts the demonstration loop test configuration

with a 50 ohm coaxial cable between the LimeSDR-Mini

transmit RF output and LimeSDR-Mini receive RF input.

Figure 8: GNU Radio QPSK Demonstration Test Loop

Configuration With LimeSDR-Mini

The GNU Radio modem flowgraph transmitted a repeating

32 bit pattern in the data portion of each frame as depicted

in Figure 6. The flowgraph operated with 2 samples per

symbol in order to achieve the demonstrated data rate of

15.0 Mbps with 15.0 MegaSamples per second/QPSK. The

Binary Slicer blocks translated each soft bit into one hard

decision bit for ASM tagging, frame stitching, and

convenient file storage for post-test playback to check for

bit errors and frame errors in non-real-time.

6. Demonstration Test Results

The following performance occurred during the QPSK

demonstration test case:

• The GNU Radio SDR Demodulator successfully

recovered the transmitted frame stream without bit

errors, without missing frames, and without extra

frames or extra bits.

• The GNU Radio SDR Demodulator successfully

“stitched” (reassembled) the frame stream back

together at the 15.0 Mbps high data rate in

real-time.

• The GNU Radio SDR Demodulator successfully

continually re-established Symbol Synchronizer

Lock and Carrier Loop lock for each new “chunk”

and each new “Chunk Preamble” marker on each

chunk chain.

The author conducted this initial GNU Radio SDR Modem

demonstration test phase without adding noise, therefore,

perfect Bit Error Rate (BER) performance occurred.

The test results demonstrated that within the scope of this

demonstration testing, the implemented GNU Radio SDR

modem can achieve QPSK demodulation at a data rate of

15.0 Mbps in real-time by using GPP multi-cores in

parallel.

GNU Radio
Modem
Laptop

(GNU Radio
Version 3.10)

LimeSDR-Mini
USB 3.0

80.0 MHz

RF Out
SMA

RF In
SMA

Demonstration of GNU Radio High Data Rate QPSK Modem at 15.0 Mbps Real-Time with

Multi-Core General Purpose Processor (GRCON 2022)

7. Forward Work

Additional follow-on activities should include upgrading

the GNU Radio SDR modem as follows:

• Expand the flowgraph capabilities for multiple

frame length options rather than just the current

fixed frame length capability of 4192 bits

including the 32 bit ASM.

• Consider upgrading to a 32 core PC/server to

demonstrate the feasibility of a 50 Mbps-100 Mbps

QPSK real-time GNU Radio modem using only

parallel GPP cores. At this time, no known

showstoppers with GNU Radio or a Linux

PC/Server would prevent scalability of the design

in this paper to additional GPP cores and higher

data rates by just adding more Symbol

Synchronizer and Costas Loop parallel chains.

• Conduct demonstrations with noise to characterize

BER vs Eb/No performance.

8. Conclusions

• Within the scope of this initial demonstration

testing phase, the GNU Radio SDR Modem

Demodulator can support a data rate of 15.0 Mbps

in real-time by just using GPP cores in parallel so

that FPGAs and GPUs are not required for HDR

performance.

• The design documented in this paper should be

scalable to much higher data rates with more

cores. It could be possible to achieve data rates up

to at least 50 Mbps or even 100 Mbps in real-time

with a 32-core PC/server, GNU Radio, and a ≥100

Megasample per second “dongle” unit with a

10.0 Gigabit Ethernet interface.

References

Miller, David T. Demonstration of GNU Radio High Data

Rate BPSK 10 Mbps Modem Real-Time with Only

Multi-Core General Purpose Processors (GRCON

2021). Proceedings of the 11th GNU Radio Conference,

September 2021.

Grayver, Eugene and Utter, Alexander. Extreme Software

Defined Radio – GHz in Real-time. IEEE Aerospace

Conference 2020.

Biography

David T. Miller received a B.S. degree in electrical

engineering from Virginia Tech and a M.S. degree in

electrical engineering from Virginia Tech. He is

currently employed as a NASA contractor with Peraton,

Inc, but note that all information and opinions presented

in this paper come only from the author’s independent

work and do not reflect the position or opinions in any

way of NASA or Peraton.

