GNU Radio Conference 2022

Demonstration of GNU Radio High Data Rate
QPSK 15 Mbps Modem Real-Time with Only
Multi-Core General Purpose Processors
(Without FPGAs or GPUSs)

September 26, 2022

David T. Miller
Dave.Todd.Miller@gmail.com

Background

0 2021 Conference Feasibility Approach: Provided paper and
Lightning talk at GNU Radio Conference 2021 on “Demonstration
of GNU Radio High Data Rate BPSK 10 Mbps Modem Real-Time
with Only Multi-Core General Purpose Processors, (Without FPGAS
or GPUs)”

> 2022 GNU Radio Conference: This presentation and associated
paper and associated github site documents an improved design
that includes support for QPSK modulation

0 Due to Moore’s Law Stagnation for single core in a General
Purpose Processor (GPP), GNU Radio Real-time limitation is about
6.0 Mbps for QPSK

> For example: One core per a symbol synchronizer block
Moore’s Law continues only via multi-cores architecture approach

Increase data rate well beyond 6.0 Mbps when using only GNU
Radio software by using approach and flowgraph that takes
advantage of multi-cores

>
>

Purpose

0 Implement practical GNU Radio approach to achieve data rates well
beyond 6.0 Mbps without FPGA and/or Graphics Processor Unit

(GPU)
> Solution With Multi-cores:

— Design breaks up received digital 1/Q stream into overlapping
“‘chunks” (blocks) of samples

— Then, processes chunks in parallel GPP cores

— and then, re-stiches demodulated chunks back together into
original transmitted single stream of frames

* No missing bits
* No missing frames

« And without duplicate bits and without duplicate frames due
to overlapping approach

Scope

0 Operate at data rate of 15.0 Mbps with GNU Radio, QPSK, LimeSDR-Mini
dongle, and parallel multi-core approach:

> QPSK at 15.0 Mbps (15.0 Megasamples per second)

> Relatively inexpensive Lenova IdeaPad 5 laptop (=$650.00 in CY2021)
containing an Advanced Micro Devices (AMD) Ryzen 7-4700U 8-core GPP

> GNU Radio software (version 3.10.3)

> Linux/Ubuntu operating system (version 20.04)

> Relatively Inexpensive LimeSDR-Mini dongle (<$200.00 in CY2021)
— High Rate Universal Serial Bus (USB) 3.0 interface
—>15.0 Megasamples per second capability

> Loop back at 80.0 MHz RF frequency

> See github site for code, documentation, flowgraphs, and relevant files:
https://github.com/DavidToddMiller/gr-HighDataRate Modem

GNU Radio RF Out
Modem
Lapt e LI e 5D R-Mini
apop . USBE 3.0
(GNU Radio
Version 3.10) SMIA

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

QT GUI Constellation Sink
102 qrgul_const_sink_x_0

Number of Points: 25
Autoscale: o

TAG_CHUNKpreamble
1Dz HighDataR. .. UNKpreambie 0 10: HighDataR._ExtTactQPSK 0
TAG_CHUNKpreamble Chunk_ExtractQPSK
10 HighDataR._ Xpreamble 0.0 10z HiIGhDAtaR.. tractQPSK_0_0
TAG_CHUNKpreamble Chunk ExtractQPSK
1D: HighOataR . Kpreamble_0 1 10: HighDBtaR. tractQPSK_0_1
n
"
¥

0 The Demodulator consists of 3
main parts:

> Demodulator Front-End

> Demodulator Parallel
Synchronization chains

> Demodulator Back-End

0 Out-Of-Tree (OOT) blocks
developed only for Demodulator
Back-End to re-stitch original
transmitter frame stream together
in original order

0 Test Modulator with pre-modulated
complex I/Q file

0 OOT Code, Flowgraphs, Detailed
System Design Document, and test
files available on:
https://github.com/DavidToddMiller
/gr-HighDataRate Modem

0 Also, see associated Conference
paper for more details

Demodulator Back-End ’OOT Blocks Required)

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

GNU Radio Transmit/Receive Flow Graph

(“Zoom In” on Test Modulator)

Test Modulator
(No OOT Blocks
except Lime Sink)

File Source

ID: blocks_file_source_0_0_0
File: ... inCOMPLEX_with32ASM

Repeat: No

Add begin tag: ()
Offset: 0
Length: 0

LimeSuite Sink (TX)
ID: limesdr_sink_0
Device Serial:

File:

RF Frequency: 80M
Sample Rate: 15M
Oversample: Default
Length Tag Name:
NCO Frequency: 0
Calibration BW: 15M
PA Path: Auto (Default)
Analog Filter BW: 20M
Digital Filter BW: 15M
Gain (dB): 25

o Test Modulator:

> File Source provides the Pre-modulated Complex 1/Q File for
transmission during a loop test

— Approach requires just 1 core for modulator portion of modem

— Sample Frame stream files for File Source block provided on
https://qithub.com/DavidToddMiller/gr-HighDataRate Modem

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

GNU Radio Transmit/Receive Flow Graph
(“Zoom In” on “Demodulator Front-End”)

LimeSuite Source (RX) 3
ID: limesdr_source_0 Slle Source
De'vice = ID: blocks_fi...ource_0_0_0_0
o ' File: ...PSK_PREamble_COMPLEX
Elle: Repeat: Ye_s B r
RF Frequency: 80M Ad: = .in st > Stream Mux
Sample Rate: 15M Multiply Const Offset‘go di 1D: blocks_stream_mux_0_0
Oversample: Default ID: blocks_mu...y_const_vxx_0 h ";' o Lengths: 1.524k, 82k
NCO Frequency: 0 Constant: 2.5 SHALE
Calibration BW:
alibration 0 Keep Min N
LNA Path: Auto(Default))
" ID: blocks_keep_m_in_n_0
Analog Filter BW: 20M - -
x M: 82k
Digital Filter BW: 0 Stream Mux
N: 210k
Gain (dB): 40 initial off 0 ID: blocks_stream_mux_0
Sl ofser Lengths: 1.524k, 82k
Keep M in N
Skip Head ID: blocks_keep_m_in_n_0_0
ID: blocks_skiphead_0 M: 82k
Num Items: 70k N: 210k
initial offset: 0

Keep M in N
Skip Head ID: blocks_keep_m_in_n_0_0_0 Stream Mux
ID: blocks_skiphead _0_0 :. M: 82k ID: blocks_stream_mux_0_1
: N: 210k Lengths: 1.524k, 82k
initial offset: 0

Demodulator Front-End (No OOT Blocks Required except Lime Source Block) H

o Demodulator Front-End: VT
: : : : 0
> Breaks the incoming single serial complex 1/Q sample stream from “Demodulator
the LimeSDR-Mini into parallel overlapping chunk streams Parallel

> Then, adds a complex I/Q 1524 sample fixed pattern “Chunk Preamble” Sync Chains”
to front of each individual chunk in each chunk stream

— Chunk Preamble used for later frame stitching process in Demodulator
Back-End after chunks pass through 3 parallel Symbol Synchronizer and
Costas Loop chains

— 1524 fixed pattern sample file for File Source block provided on
https://qithub.com/DavidToddMiller/gr-HighDataRate Modem -7-

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

Functional: Create 3 parallel Chunk Streams with
Chunk Overlap in “Demodulator Front-End”

INCOMING CONTINUOUS STREAM OF COMPLEX 1/Q SAMPLES FROM DIGITAL DOWNCOMNVERTER

.......

From 200
Lime5DR | | : : '
-Mini . ” T :
n 15t CHUNK'for CHAIN #1 {210,000 SAMPLES] [-Ver-: : 2nd CHUNK for CHAIN #1
; ; ézpz : ; (210,000iSAMPLES)

CHUNK CHAIN #1;
(KEEP 82,000 of 215,000
SAMPLES] :

skip Head :

SECOND CHUNK iof
CHAI #1 (KEEP 82,000
of 210,000 SAMPLES)

70,000 Samples |2Veri 1 CHUNK
-Iap;__

Each Overlapis | 206!

‘for CHAIN #2 (210,000 SAMPLES)

207

12,000 Samples

CHUNK CHAIN #2
(KEEP 82,000 of '

— Chunk Creation
“““ for First Chain

. Chunk Creation
""" for Second Chain
Chunk Creation
""" for Third Chain

210,000 SAMPLES):

C’IUE“. 1st CHUNK for|CHAIN #3 (210,000 SAMPLES)
-lap;
209

CHUNK CHAIN #3

{KEEP 82000 of 210000
SAMPLES)

;;;;;;;;;;;;;

- See Associated
Conference
paper

- Also, github
Site provides
System Design
Document

o 12,000 sample overlap at beginning and end of each chunk occurs relative
to adjacent chuck (see 202, 206, and 209 in Figure)

> Adjacent chunks will be on different parallel synchronization chains

0 Reasons for overlap covered in later chart on “Demodulator Parallel
Synchronization Chains”

Functional: Add Chunk Preamble to Each Chunk In
“Demodulator Front-End”

CHUNK
PREAMBLE
(1524 . CHUNK
SAMPLES) STREAM _|PREAMBLE CHUNK CHAINBLOCK |
MULTIPLEXER (1524 (82,000 SAMPLES)
CHUNK CHAIN BLOCK SAMPLES)
(82,000 SAMPLES)

o QPSK demodulator design adds the 1524 sample “Chunk Preamble” to
each 82,000 sample chunk

> See actual “File Source” block and “Stream Mux” blocks in Demodulator
Front-End on previous charts

o “Chunk Preamble” stored in prepared file in complex I/Q format has 3 parts:
> Starts with complex I/Q pattern of 960 samples

— 960 bits based on 2 samples/symbol & 2 bits per symbol for QPSK)
(-1-j1, -1-j1, 1+j1, 14j1 ..))

> Next part of Chunk Preamble: 64 sample Chunk Preamble Marker in complex
I/Q format

— 64 bits based on 2 samples/symbol and 2 bits/symbol
> Final part of Preamble: 500 zeros sample sequence

GNU Radio Transmit/Receive Flow Graph

(“Zoom In” on “Demodulator Parallel S)gnchronization Chains”)
rom “‘Demodulator Front-EndY,

Symbol Sync

QT GUI Constellation Sink
1D: gtgui_const_sink_x_0
Number of Points: 256
Autoscale: No

I1D: digital_symbol_sync_xx_0

Timing Error Detector: Gardner

Samples per Symbol: 2

‘error | Expected TED Gain: 1

Loop Bandwidth: 125.6rm

T inst| Damping Factor: 1

Maximum Deviation: 1.5

T avg| Output Samples/Symbol: 1

Interpolating Resampler: Polyphase Filterbank, MMSE

Costas Loop
frequencyl |p,. digital_costas_loop_cc_0

Loop Bandwidth: 78.5397m
Order: 4

noise

hi

Complex To Float

Binary Slicer Interleave
1D: blocks_complex_to_float 0

ID: digital_b...slicer fb 0 0 Y 1D: blocks_interleave_0

Filterbank Arms: 128

Binary Slicer Interleave Complex To Float
-+ N t R Symbol Sync
ID: digital_b...icer fb 0 0 0 ID: blocks_interleave 0 0 ID: blocks co..._to float 0 0 1
n m @l 1D: digital_s...|_sync xx_0_0
frequency P Timing Error Detector: Gardner

freguen:
1D: digital_c...s_loop_cc_0_0
Atelllet I Samples per Symbol: 2
Loop Ba h: 78.5397m -
noise Expected TED Gain: 1
Order: 4 N
Loop Bandwidth: 125.6m .ﬂ-’

E Damping Factor: 1

Maximum Deviation: 1.5

Output Samples/Symbol: 1

Interpolating Resampler: Polyphase Filterbank, MMSE

Filterbank Arms: 128

A

Interleave ino] £ Complex To Float
out Symbol Sync
ID: blocks_interleave_0_0_0 mg| '0: Plocks_co...0_float_0_0_0 1D: digital_s...sync_xx_0_0_0
n im, Costas Loop . gital_s...sync_xx 0.0
w e Timing Error Detector: Gardner
1D: digital_c...loop_cc 0 0 0
Loop B ht 78.5397m Samples per Symbol: 2
el I lO u a Or ara e hase™| . jer:a T noise: \eror | Expected TED Gain: 1
rder:
Loop Bandwidth: 125.6m
T_inst| Damping Factor: 1

Maximum Deviation: 1.5

Synchronization Chains
(No OOT Blocks Required)
\{}To “Demodulator Back-End”

[Demodulator Parallel Synchronization Chains: Process 3 chunk streams in 3 parallel
GPP cores

[0 Chunk Overlap Required for 2 Reasons:

1) Symbols per 82,000 sample chunk can vary randomly by a few symbols from chunk
to chunk depending on difference between transmitter and receiver (dongle) clock

2) Symbol Sync & Costas Loop Blocks must continuously sync 2 times for each 82,000
sample chunk and its chunk preamble (error bits at start of each sync) -10-

T avg| Output Samples/Symbol: 1
Interpolating Resampler: Polyphase Filterbank, MMSE
Filterbank Arms: 128

GNU Radio Transmit/Receive Flow Graph
(“Zoom In” on “Demodulator Back-End”)

From “Demodulator Parallel
Svynchronization Chains”

TAG_CHUNKpreamble Chunk_ExtractQPSK Keep M in N
i
ID: HighDataR...UNKpreamble_0 1D: HighDataR...ExtractQPSK_0 3 .
- - Stream Mux 1D: blocks_keep_m_in_n_0 1

ID: blocks_stream_mux_2 H M: 74.27k
TAG_CHUNKpreamble Chunk_ExtractQPSK - - y
o= p) = Q Lengths: 82.51k,...1k, 82.51k N: 82.51k
ID: HighDataR...Kpreamble_0_0 ID: HighDataR...tractQPSK_0 0 .
initial offset: 8.24k

TAG_CHUNKpreamble Chunk_ExtractQPSK
ID: HighDataR...Kpreamble_0_1 ID: HighDataR...tractQPSK_0_1

File Sink
ID: blocks_file_sink_0_0

File: ...L_OUTPUT_FRAMES_ONLY
Unbuffered: Off
. Resolve_Phase Extract_Frame Tag_FrameASM
Append file: Overwrite) - . -) -
ID: HighDataR...solve_Phase 0 ID: HighDataR...tract_Frame_0 ID: HighDataR...ag_FrameASM_0

Demodulator Back-End (OOT Blocks Required)

0 Demodulator Back-End: Re-stiches demodulated chunks back into the
original transmitted frame stream
o OOT Blocks Required:
> “TAG_CHUNKpreamble” blocks and Tag FrameASM block:

— Modified “Correlate Access Code — Tag” In-Tree block to identify and tag all 4
possible QPSK Preamble Marker or ASM phases: 45°, 135°, 225°, and 315°

> “Chunk_ExtractQPSK” blocks
> “Extract_Frame” block

> “Resolve Phase” block: Rotates bits in entire frame depending on phase rotation
of frame’s ASM -11-

Functional: “Demodulator Back-End”
(“TAG_CHUNKpreamble & “Chunk_ExtractQPSK” Blocks)

PARALLEL SYMBOL
SYMCHROMIZER -

CHUMNK
PRE-

COSTAS LOOP CHAIN
#1

PARELLEL 5YMBOL
SYMCHROMIZER -

APMBLE
1524
BITS

CHUNK FROM CHAIMN %1

{= 82,000 Bits)

CHUNK
FRE-

COSTAS LOOP CHAIN
=2

FARALLEL S¥YPMBOL

AMBLE
1524
Bits

CHUNK FROM CHAIN 22
{= 82,000 Bits)

CHUNK
FRE-

SYMCHROMIZER -
COSTAS LOOP CHAIN
=3

0 OOT TAG_CHUNKpreamble & “Chunk_ExtractQPSK” Blocks to

AMBLE
1524
Bits

CHUNK FROM CHAIN 23
{= 82,000 Bits)

—]

CHUNK CHAIMN
MULTIPLEX &
REMOVE
PREAMEBLE
EXCEPT LAST
500 ZEROS
AMD FIRST 10
BITS OF
PREAMBLE OF
FOLLOWING
CHUNEK

— =

CHUMK FROM CHAIN 23
{= 82,510 Bits)

CHUMK FROM CHAIN 22
{= 82510 Bits)

CHUMK FROM CHAIN 21
{= 82510 Bits)

{MULTIPLEX CHUNKS AND REMOVYE PREAMBLE)

RECOVER
ORIGINAL
TRANSMIT
SOURCE
FRAME
STREAM

puts the chunks stream back into a single chunk stream:

> ldentify beginning of each chunk with the chunk marker in the
chunk pre-amble

> Extract each chunk

> Then, with In-Tree blocks (“Stream Mux” and “Keep M in N”), put

chunks in order:
—Note: Overlap still exists

-12-

Functional: “Demodulator Back-End”
(“TAG_FrameASM, Extract_Frame, & “Resolve_Phase” Blocks)

FRAME ASM 5TARTS

FRAME ASM 5TARTS
506

RESOLVE PHASE CHUNK FROM CHAIN#1: © - i} CHUNKFROM CHAIN 220 | P CHUNK FROM CHAIN #3
1 amsieity T = 82,510 BITS) P e e (= B2510BITS) e el P e (= 82,510 BITS)
i N (“Resolve_Phase” I|IJr P 5-—&; ,-' . “\.\ :
OUTAIT GF BLOCK] 505 507 508 510 511
FLOWGRAPH: SHORT INCORRECT CORRECT WRONG
ORIGINAL FRAME LENGTH 50 FRAME FRANME
TRAMNSMITTED DISCARD AND ALSO LENGTH 50 LENGTH 50
FRAME DISCARD FOLLOWING EXTRACT FOR DISCARD
STREAMN DUPLICATE FRAME OuUTPUT

[“Extract_Frame” Block (Functional Data Flow)

“KEEP M in M

|| BLOCK" and
“Tag_FrameASm'

BLOCK
(SIGNAL
CONDITIO N NG)

ouUTPUT

le— FROM

“STREAM
LK
BLOCK

Figure depicts functionally the Tag_FrameASM?, Extract_Frame, and

Resolve Phase blocks with a functional flow right to left

back together without errors:

Distance between ASM markers is used to re-stitch the original frame stream

> Correct valid frame only when the frame has a correct frame length of 4192

bits (510 above)

> Delete bits between ASM markers when wrong frame length (511 above)
> Occasional duplicate frames due to overlap are also identified and discarded

(507 and 508 above)

bits in each ASM (resolve phase ambiguity)

Resolve Phase: Rotate all bits in each frame appropriately based on rotation of

13-

Block Distribution on 8 GPP Cores
(GNU Radio Blocks have Affinity Setting Feature)

Flowgraph Block Core/Affinity

Test Modulator File Source Block 1

LimeSuite Source (Receiver)

LimeSuite Sink (Modulator)

Demodulator Front-End Skip and Multiplier Blocks

Demodulator Front-End “Keep M in N and “Stream Mux” Blocks

Demodulator Front-End File Source (Preamble) Block

Symbol Synchronizer/Costas Loop (Chunk Chain #1):

Symbol Synchronizer/Costas Loop (Chunk Chain #2)

Symbol Synchronizer/Costas Loop (Chunk Chain #3)

Fop}

“Complex To Float” Blocks 4,

“Binary Slicer” and “Interleave” Blocks

“TAG_CHUNKpreamble” Blocks

“Chunk_ExtractQPSK” Blocks

Demodulator Back-End “Stream Mux” Block

Demodulator Back-End “Keep M in N” Block

“Tag_FrameASM” Block

“Extract_Frame” Block

“Resolve Phase” Block

W W w wlwlw|IN NN oio|ol | BN DNDIDNI P

Demodulator Back-End File Sink Block

-14-

Results & Future Work

0 Results: Successfully operated real-time at 15.0 Mbps, QPSK with
just GPP cores in parallel

> FPGAs and GPUs were not required for HDR performance

> See associated paper in GNU Radio Conference 2022 Proceedings
for details

> See associated System Design Document details, OOT code,
.grc flowgraph for operation with LimeSDR-Mini dongle, and prepared
test files:

— https://github.com/DavidToddMiller/gr-HighDataRate Modem

—Also, simulation flowgraph on github site for those without dongle
who want to try parallel multicore approach

o Future Work:

> Design should be scalable to data rates a lot higher than 15.0 Mbps
(just add more cores and parallel chains)

—Requires PC with at least 16-24 cores to add coding, higher data
rates, and real-time modulator

-15-

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

