
September 26, 2022

GNU Radio Conference 2022

Demonstration of GNU Radio High Data Rate
QPSK 15 Mbps Modem Real-Time with Only

Multi-Core General Purpose Processors
(Without FPGAs or GPUs)

David T. Miller
Dave.Todd.Miller@gmail.com

-2-

Background

❑ 2021 Conference Feasibility Approach: Provided paper and
Lightning talk at GNU Radio Conference 2021 on “Demonstration
of GNU Radio High Data Rate BPSK 10 Mbps Modem Real-Time
with Only Multi-Core General Purpose Processors, (Without FPGAs
or GPUs)”

➔ 2022 GNU Radio Conference: This presentation and associated
paper and associated github site documents an improved design
that includes support for QPSK modulation

❑ Due to Moore’s Law Stagnation for single core in a General
Purpose Processor (GPP), GNU Radio Real-time limitation is about
6.0 Mbps for QPSK

➔ For example: One core per a symbol synchronizer block

➔ Moore’s Law continues only via multi-cores architecture approach

➔ Increase data rate well beyond 6.0 Mbps when using only GNU
Radio software by using approach and flowgraph that takes
advantage of multi-cores

-3-

Purpose

❑ Implement practical GNU Radio approach to achieve data rates well
beyond 6.0 Mbps without FPGA and/or Graphics Processor Unit
(GPU)

➔ Solution With Multi-cores:

— Design breaks up received digital I/Q stream into overlapping
“chunks” (blocks) of samples

— Then, processes chunks in parallel GPP cores

— and then, re-stiches demodulated chunks back together into
original transmitted single stream of frames

• No missing bits

• No missing frames

• And without duplicate bits and without duplicate frames due
to overlapping approach

-4-

Scope

❑ Operate at data rate of 15.0 Mbps with GNU Radio, QPSK, LimeSDR-Mini
dongle, and parallel multi-core approach:

➔ QPSK at 15.0 Mbps (15.0 Megasamples per second)

➔ Relatively inexpensive Lenova IdeaPad 5 laptop (≈$650.00 in CY2021)
containing an Advanced Micro Devices (AMD) Ryzen 7-4700U 8-core GPP

➔ GNU Radio software (version 3.10.3)

➔ Linux/Ubuntu operating system (version 20.04)

➔ Relatively Inexpensive LimeSDR-Mini dongle (<$200.00 in CY2021)

— High Rate Universal Serial Bus (USB) 3.0 interface

— >15.0 Megasamples per second capability

➔ Loop back at 80.0 MHz RF frequency

➔ See github site for code, documentation, flowgraphs, and relevant files:
https://github.com/DavidToddMiller/gr-HighDataRate_Modem

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

-5-

GNU Radio Transmit/Receive Flowgraph Overview

❑ The Demodulator consists of 3
main parts:

➔ Demodulator Front-End

➔ Demodulator Parallel
Synchronization chains

➔ Demodulator Back-End

❑ Out-Of-Tree (OOT) blocks
developed only for Demodulator
Back-End to re-stitch original
transmitter frame stream together
in original order

❑ Test Modulator with pre-modulated
complex I/Q file

❑ OOT Code, Flowgraphs, Detailed
System Design Document, and test
files available on:
https://github.com/DavidToddMiller
/gr-HighDataRate_Modem

❑ Also, see associated Conference
paper for more details

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

-6-

GNU Radio Transmit/Receive Flow Graph
(“Zoom In” on Test Modulator)

Test Modulator

(No OOT Blocks

except Lime Sink)

❑ Test Modulator:

➔File Source provides the Pre-modulated Complex I/Q File for
transmission during a loop test

— Approach requires just 1 core for modulator portion of modem

— Sample Frame stream files for File Source block provided on
https://github.com/DavidToddMiller/gr-HighDataRate_Modem

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

-7-

GNU Radio Transmit/Receive Flow Graph
(“Zoom In” on “Demodulator Front-End”)

❑ Demodulator Front-End:

➔ Breaks the incoming single serial complex I/Q sample stream from
the LimeSDR-Mini into parallel overlapping chunk streams

➔ Then, adds a complex I/Q 1524 sample fixed pattern “Chunk Preamble”
to front of each individual chunk in each chunk stream

— Chunk Preamble used for later frame stitching process in Demodulator
Back-End after chunks pass through 3 parallel Symbol Synchronizer and
Costas Loop chains

— 1524 fixed pattern sample file for File Source block provided on
https://github.com/DavidToddMiller/gr-HighDataRate_Modem

Demodulator Front-End (No OOT Blocks Required except Lime Source Block)

To

“Demodulator

Parallel

Sync Chains”

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

-8-

Functional: Create 3 parallel Chunk Streams with
Chunk Overlap in “Demodulator Front-End”

❑ 12,000 sample overlap at beginning and end of each chunk occurs relative
to adjacent chuck (see 202, 206, and 209 in Figure)

➔Adjacent chunks will be on different parallel synchronization chains

❑ Reasons for overlap covered in later chart on “Demodulator Parallel
Synchronization Chains”

- See Associated

Conference

paper

- Also, github

site provides

System Design

Document

-9-

Functional: Add Chunk Preamble to Each Chunk in
“Demodulator Front-End”

❑ QPSK demodulator design adds the 1524 sample “Chunk Preamble” to
each 82,000 sample chunk

➔ See actual “File Source” block and “Stream Mux” blocks in Demodulator
Front-End on previous charts

❑ “Chunk Preamble” stored in prepared file in complex I/Q format has 3 parts:

➔ Starts with complex I/Q pattern of 960 samples

— 960 bits based on 2 samples/symbol & 2 bits per symbol for QPSK)
(-1-j1, -1-j1, 1+j1, 1+j1 …)

➔ Next part of Chunk Preamble: 64 sample Chunk Preamble Marker in complex
I/Q format

— 64 bits based on 2 samples/symbol and 2 bits/symbol

➔ Final part of Preamble: 500 zeros sample sequence

-10-

GNU Radio Transmit/Receive Flow Graph
(“Zoom In” on “Demodulator Parallel Synchronization Chains”)

From “Demodulator Front-End”

To “Demodulator Back-End”

❑ Demodulator Parallel Synchronization Chains: Process 3 chunk streams in 3 parallel
GPP cores

❑ Chunk Overlap Required for 2 Reasons:

1) Symbols per 82,000 sample chunk can vary randomly by a few symbols from chunk
to chunk depending on difference between transmitter and receiver (dongle) clock

2) Symbol Sync & Costas Loop Blocks must continuously sync 2 times for each 82,000
sample chunk and its chunk preamble (error bits at start of each sync)

Demodulator Parallel

Synchronization Chains

(No OOT Blocks Required)

-11-

GNU Radio Transmit/Receive Flow Graph
(“Zoom In” on “Demodulator Back-End”)

From “Demodulator Parallel

Synchronization Chains”

Demodulator Back-End (OOT Blocks Required)

❑ Demodulator Back-End: Re-stiches demodulated chunks back into the
original transmitted frame stream

❑ OOT Blocks Required:
➔ “TAG_CHUNKpreamble” blocks and Tag _FrameASM block:

— Modified “Correlate Access Code – Tag” In-Tree block to identify and tag all 4
possible QPSK Preamble Marker or ASM phases: 45°, 135°, 225°, and 315°

➔ “Chunk_ExtractQPSK” blocks
➔ “Extract_Frame” block
➔ “Resolve_Phase” block: Rotates bits in entire frame depending on phase rotation

of frame’s ASM

-12-

Functional: “Demodulator Back-End”
(“TAG_CHUNKpreamble & “Chunk_ExtractQPSK” Blocks)

❑ OOT TAG_CHUNKpreamble & “Chunk_ExtractQPSK” Blocks to
puts the chunks stream back into a single chunk stream:

➔ Identify beginning of each chunk with the chunk marker in the
chunk pre-amble

➔Extract each chunk

➔Then, with In-Tree blocks (“Stream Mux” and “Keep M in N”), put
chunks in order:

— Note: Overlap still exists

-13-

Functional: “Demodulator Back-End”
(“TAG_FrameASM, Extract_Frame, & “Resolve_Phase” Blocks)

❑ Figure depicts functionally the Tag_FrameASM”, Extract_Frame, and
Resolve_Phase blocks with a functional flow right to left

❑ Distance between ASM markers is used to re-stitch the original frame stream
back together without errors:

➔ Correct valid frame only when the frame has a correct frame length of 4192
bits (510 above)

➔ Delete bits between ASM markers when wrong frame length (511 above)

➔ Occasional duplicate frames due to overlap are also identified and discarded
(507 and 508 above)

❑ Resolve Phase: Rotate all bits in each frame appropriately based on rotation of
bits in each ASM (resolve phase ambiguity)

-14-

Block Distribution on 8 GPP Cores
(GNU Radio Blocks have Affinity Setting Feature)

Flowgraph Block Core/Affinity

Test Modulator File Source Block 1

LimeSuite Source (Receiver) 1

LimeSuite Sink (Modulator) 1

Demodulator Front-End Skip and Multiplier Blocks 2

Demodulator Front-End “Keep M in N” and “Stream Mux” Blocks 2

Demodulator Front-End File Source (Preamble) Block 2

Symbol Synchronizer/Costas Loop (Chunk Chain #1): 4

Symbol Synchronizer/Costas Loop (Chunk Chain #2) 5

Symbol Synchronizer/Costas Loop (Chunk Chain #3) 6

“Complex To Float” Blocks 4,5,6

“Binary Slicer” and “Interleave” Blocks 7

“TAG_CHUNKpreamble” Blocks 7

“Chunk_ExtractQPSK” Blocks 7

Demodulator Back-End “Stream Mux” Block 3

Demodulator Back-End “Keep M in N” Block 3

“Tag_FrameASM” Block 3

“Extract_Frame” Block 3

“Resolve_Phase” Block 3

Demodulator Back-End File Sink Block 3

-15-

Results & Future Work

❑ Results: Successfully operated real-time at 15.0 Mbps, QPSK with
just GPP cores in parallel

➔ FPGAs and GPUs were not required for HDR performance

➔ See associated paper in GNU Radio Conference 2022 Proceedings
for details

➔ See associated System Design Document details, OOT code,
.grc flowgraph for operation with LimeSDR-Mini dongle, and prepared
test files:

— https://github.com/DavidToddMiller/gr-HighDataRate_Modem

— Also, simulation flowgraph on github site for those without dongle
who want to try parallel multicore approach

❑ Future Work:

➔ Design should be scalable to data rates a lot higher than 15.0 Mbps
(just add more cores and parallel chains)

— Requires PC with at least 16-24 cores to add coding, higher data
rates, and real-time modulator

https://github.com/DavidToddMiller/gr-HighDataRate_Modem

