September 27, 2022

Chris Poore

Senior Reverse Engineer

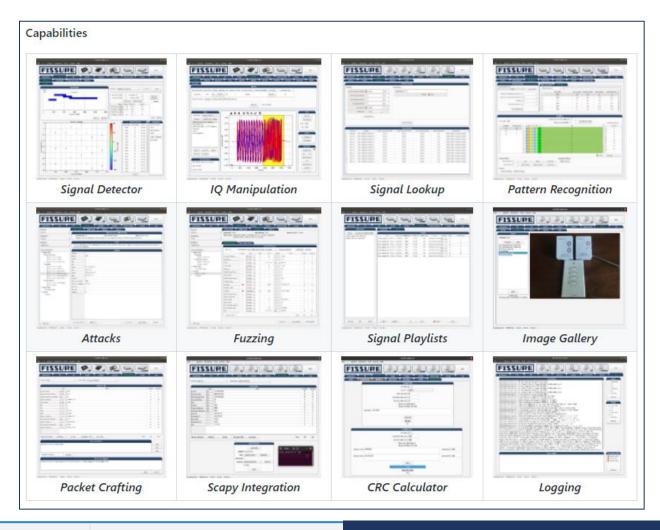
Assured Information Security, Inc.

FISSURE: The RF Framework

GNU Radio Conference 2022

Outline

- Summary
- Origins
- Core Principles
- Component Details
- GNU Radio Integration
- Roadmap
- Contributing



FISSURE - The RF Framework

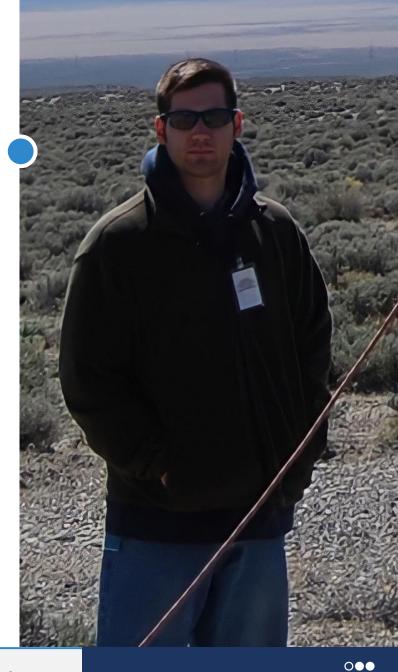
Summary

- Open-source RF and reverse engineering framework
- Contains hooks for detection, classification, protocol discovery, attack execution, vulnerability analysis, automation, AI/ML
- Consolidates all-things RF: software modules, radios, protocols, signal data, scripts, flow graphs, reference material, and third-party tools
- Speeds up the characterization of signals and the identification of vulnerabilities in RF protocols, waveforms, and devices
- Mostly Python & PyQt with support for legacy systems
- Out-of-the-box, pain-free software installer
- Meant for everyone: experts and beginners, edit pieces on your own

FISSURE – The RF Framework

Summary

- On GitHub since August 10, 2022
- Promoted at DEF CON Demo Labs August 12, 2022
- You may have seen:
 - Griffiss Institute Lecture + Education Series April 28, 2021
 - 2021 C4I and Cyber Technology Conference August 3, 2021
- Learn more at:
 - Twitter (@FissureRF)
 - Discord (see GitHub)
 - chat.gnuradio.org (cpoore1)
 - Reddit (r/FISSURE)
 - ainfosec.com (future)



Origins

Background & Context

Mr. Chris Poore AlS, Senior Reverse Engineer

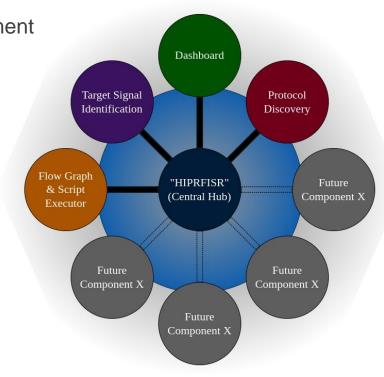
- Electrical engineer at a cybersecurity company
 - Assured Information Security, Inc. (HQ: Rome, NY)
 - Advanced Research, Cyber Operations, Intelligence Analysis, Security Testing, Trusted Systems
 - Artificial Intelligence, Machine Learning, Computer Architectures, Behavioral Science, Software and Malware Analysis, Virtualization, Cross Domain Solutions, Reverse Engineering, Embedded Systems, Penetration Testing, and more
- Worked on RF projects entire career
 - Constantly jumping around to different technologies with each project
 - Always something/somewhere new
- I need to know everything about the different RF technologies to:
 - Characterize systems
 - Assess security
 - Exploit and interact with targets
 - Perform research
 - Develop tools
 - Teach others

Origins

What does FISSURE mean?

<u>Frequency Independent SDR-based Signal Understanding and Reverse Engineering</u>

Where did it come from?


- 2014 project for designing a flexible system for automatic RF device assessment
- Internal research and development over several years

What does it look like?

- PyQt GUI with many tabs and menu items
- Dedicated Python components communicating to a central hub over ZMQ
- YAML schema for input sanitization and error handling

Why extend it to the Open-Source community?

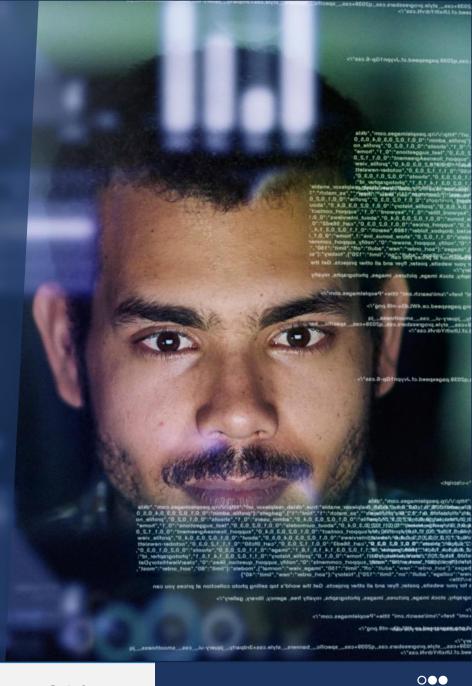
- Makes all our jobs easier
- Brings in outside knowledge
- Benefit future generations
- Revolutionize engineering and cybersecurity

Principles

The Fundamental Elements of FISSURE

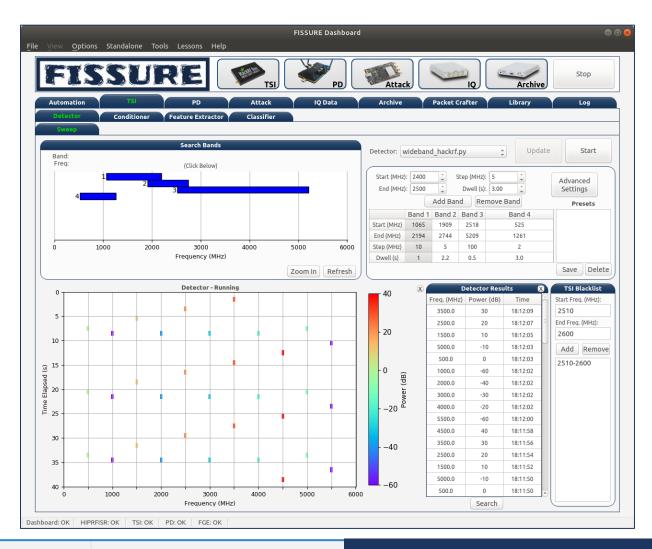
- Speed up signal characterization
- Support rapid integration of existing tools and algorithms
- Provide flexibility to support new features
- Consolidate useful software and information
- Access commonly performed operations
- Allow data to be passed over a network and between components
- Contain transparent, easy-to-understand code

- Help with identification of vulnerabilities in protocols and devices
- Utilize commercial SDRs and other commonplace hardware
- Be a testbed for AI/ML and automation
- Promote RF and Cyber in education
- Easy-to-use, helpful visualizations
- Simple and reliable installation
- Support the latest and legacy

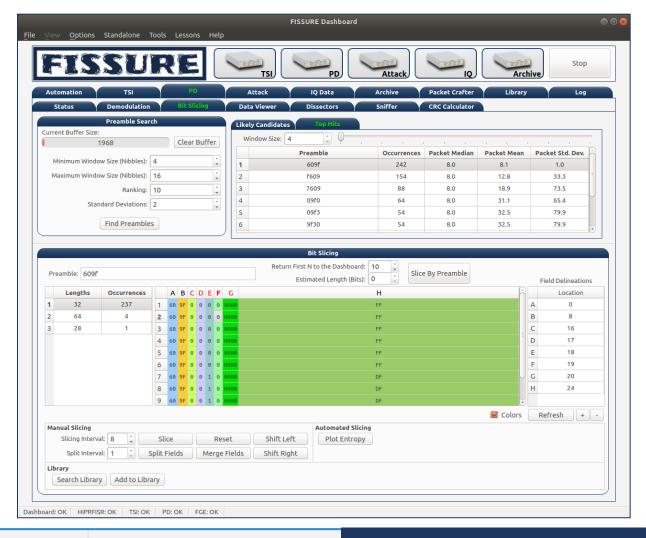

Principles

FISSURE is a Framework

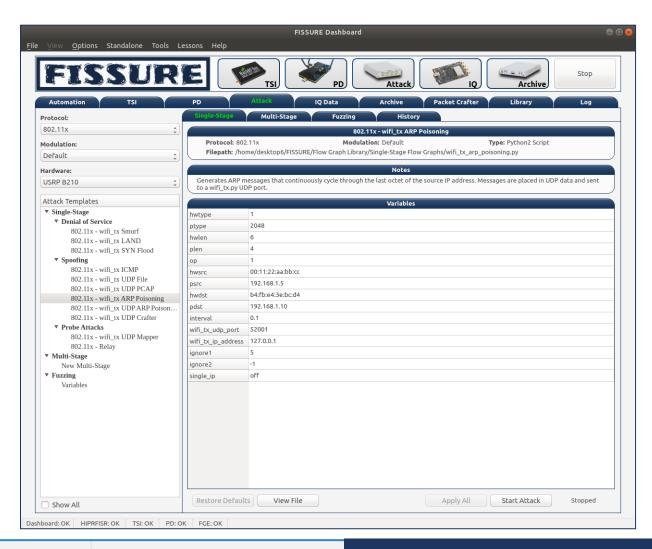
- Not a finished product, it will look different over time
- Filled with examples of how to do things
- Everything can be improved, nothing is complete, and more can be integrated
- Requires feedback from the community
- Will adapt to help as many as possible
- Needs to be built up before automation can have a larger role
- Meant for everyone
 - Experts can expose cutting-edge solutions
 - Professionals can perform their daily tasks
 - Educators can teach
 - Students, hobbyists, developers can learn


- Target Signal Identification
- Protocol Discovery
- Attacks
- IQ Manipulation
- Online Signal Archive
- Packet Crafting
- Third-Party Tools
- Lessons

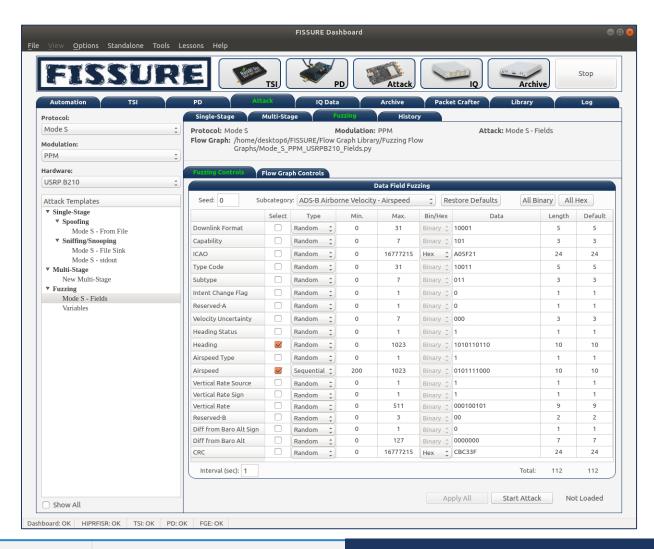
Target Signal Identification


- Detector
 - Fast-scanning, slow-scanning
 - Power, frequency, time
- Signal Conditioner
 - Isolate, condition signals from a stream of raw I/Q
- Feature Extractor
 - Extract predetermined list of signal characteristics dependent on AI/ML classification method
- Protocol/Emitter Classifier
 - Interpret feature sets and provide confidence levels for protocol and emitter classification
- Future
 - hackrf_sweep, rtl_power fast-scanning detectors
 - Swap and compare AI/ML techniques, automation

Protocol Discovery


- Recursive Demodulation
 - Load flow graphs, extract signal parameters, work towards a bitstream
- Bit Slicing
 - Identify patterns in a circular buffer filled with data to isolate fields and add messages to the library
- Data Viewer
 - Manipulate bits, view hex, compare to known protocol & message formats
- Custom Dissectors
 - Create Lua Wireshark dissectors and view/record messages returned from demodulation flow graphs
- CRC Calculator
 - Apply common CRC algorithms
 - Find the CRC polynomial from two messages with known CRCs
- Future
 - Parameter acquisition, protocol confidence levels, pattern recognition, variable length messages

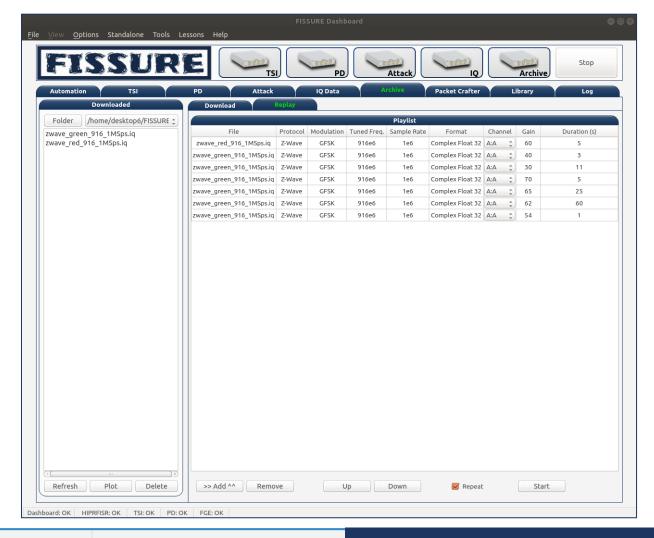
Attacks


- Single-stage
 - Python2/Python3 scripts
 - Simple header added to the file for default values
 - Flow Graphs with/without GUIs
 - Wireless or wired applications
- Multi-stage
 - String multiple attacks in succession
 - Run each one on a loop for a specified duration

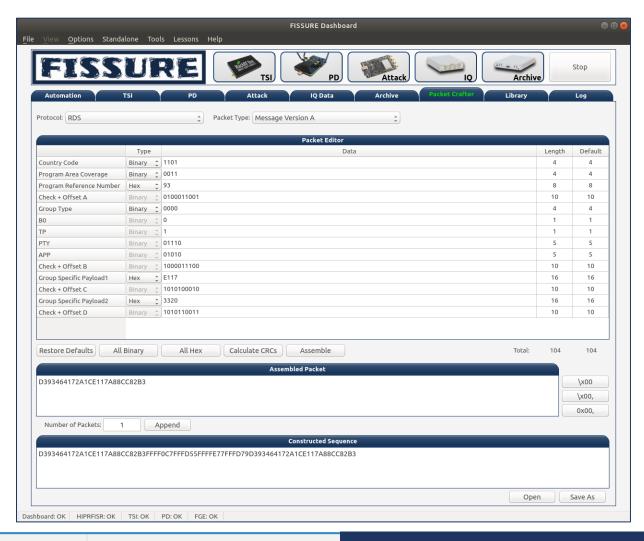
Attacks (Continued)

- Data field fuzzing
 - Check Fields
 - Choose random or sequential fuzzing
 - Specify ranges for fuzzing
 - Enter a transmit interval
 - Automatically recalculates CRCs
- Flow graph variable fuzzing
 - Fuzz individual GNU Radio variables for blocks with callbacks
- Future
 - More attacks
 - Further hardware support
 - Vulnerability analysis

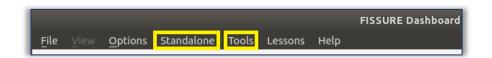
IQ Manipulation

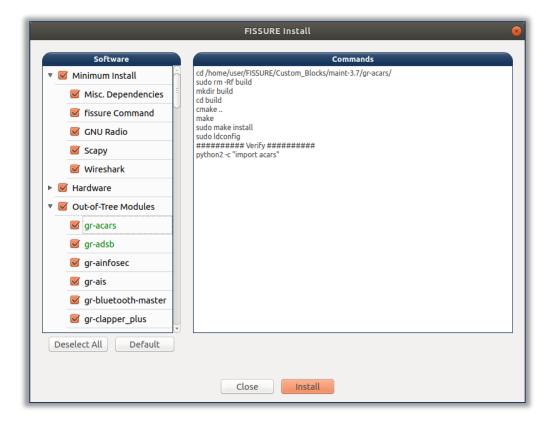

- Live inspection flow graphs
- Record and playback
- View data
 - Plot, zoom, pan, save, measure
- Modify data
 - Crop, convert, append, apply timeslots, overlap, resample, OFDM analysis, normalize
- Perform analysis
 - Magnitude, instantaneous frequency, spectrogram, FFT, moving average, morse code, polar plot
- Future
 - Time/frequency measurement, obtaining symbol rates
 - Radar data analysis
 - Filtering
 - Better inspection flow graphs

Online Signal Archive


- Download online files
- Create playlists to simulate traffic and test systems
- Future
 - Standardized metadata format: SigMF
 - Create data sets, collections
 - Import from other sources
 - Build playlists of data sets
 - Save/load playlists

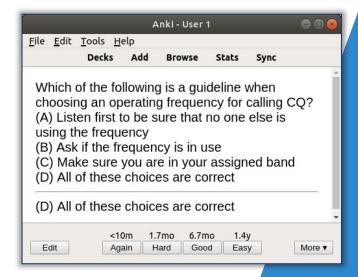
Packet Crafting


- Assemble custom packets for protocols in library
- Calculate CRC values
- Construct sequences of messages
- Scapy integration for Wi-Fi
- Future
 - More protocols and packet types
 - Quick links to attacks with file sources



Third-Party Tools

- Standalone flow graphs
 - Favorites that can be edited
 - Separate from the rest of FISSURE
- Third-party tools included with the install
 - Launch directly from the menu
 - Open a terminal with example commands
- Online tools and reference material
 - Maps, calculators, databases, etc.
- Future
 - More protocols, tools
 - Cleaner, more organized installer
 - Docker alternative


Lessons

- Instructions on how the technology, protocols, and tools work
- Tie the lessons and steps into FISSURE
- Topics like:
 - OpenBTS
 - Lua dissectors
 - Sound eXchange
 - ESP boards

- Radiosonde tracking
- RFID
- Data types
- Custom GNU Radio blocks

- Future
 - More topics, updates to existing topics
 - Colleges, High schools
 - Clubs, Workshops
 - Hacking/Cyber/RF events

- TPMS
- Ham Radio Exams
- Wi-Fi Attacks

GNU Radio Integration

What is the Role of GNU Radio?

- Running several types of flow graphs, passing data in different ways
 - Detection
- Sniffing

Inspection

- Attacks
- Protocol discovery
- Fuzzing

- Demodulation
- Changing variable values, loading flow graphs
 - Before runtime
 - While running
 - Running flow graphs with and without GUIs from Python
- Support for 3.7, 3.8, and 3.10 (as separate branches)
- Out-of-Tree modules are submodules pulled from repos
 - Will need to be monitored
- Looking for better and additional ways of using GNU Radio

Roadmap

What's Next?

- The open source governance model has room to evolve
 - Founder-leader > Corporate-backed > Do-ocracy
- Continuing the push for funding avenues
- Establishing more ties with education
- Releasing updated documentation and videos
 - At AIS domain (ainfosec.com)
- Improving existing software
 - Cleaning code, removing bugs, testing more SDRs, expanding lessons
 - Detection, signal conditioning, feature extractor, protocol/emitter classifier
 - Sensor node deployment scheme
- Adding new pieces
 - Not re-inventing the wheel
 - Recursive demodulation, protocol discovery, tracking, vulnerability analysis

Contributing

What can you do?

- Showing your interest is vital
 - Makes for an easier sell to internal/external customers
 - Star the project on GitHub, join the Discord server, follow on Twitter
 - Contact the developers/AIS
- Contributions strengthen the software and saves development time
- Suggestions focus the updates and help others who feel the same way
 - Software tools, hardware suggestions, IQ analysis algorithms, attacks scripts, new operating systems, bugs, improvements
 - New tabs, components, features
- Collaborate with AIS
 - Speeds up FISSURE development and can aid your project at the same time
- Submit a resume to AIS for full-time employment

Any Questions

Chris Poore

Senior Reverse Engineer poorec@ainfosec.com Assured Information Security, Inc.

https://github.com/ainfosec/FISSURE

