Open-Source Antenna Pattern Measurement System SDR-based Student Research and Development \$

WEBER STATE UNIVERSITY

Background : Objectives

- A low-cost open source antenna pattern measurement system based upon an IEEE paper* was modified to incorporate:
 - \circ Software-defined radios
 - Arduino microcontroller
 - Commercial hardware
 - Custom-made parts using 3-D printer technology
- The system is low-cost and accessible allowing future student projects to experiment with communication theory topics and hardware
- Outreach & loan/collaborates with other universities

*Picco & Martin, "An Automated Antenna Measurement System Utilizing Wi-Fi Frequency" (IEEE A & P Magazine, Dec 2011)

Background : Utah NASA Space Grant I (2018-2019)

Figs 1. Version 1 in laboratory with normalized principal patterns of QWMP and Yagi prototypes

Fig. 2. Clock Synchronization between Tx and Rx software radios

Background : Coherent AM Signal Simulation

WEBER STATE UNIVERSITY

Fig. 3. Multisim illustration of Coherent AM signal MOD/DeMOD

Background : Utah NASA Space Grant II (2021-2022)

WEBER STATE UNIVERSITY

 \mathbf{W}

()

8

2 Application : Circular Microstrip Patch

Application : Quarter-Wave Monopole

2 Application : Yagi-Uda Prototype

WEBER STATE UNIVERSITY

()

3 Upgrades : Software

- Python:
 - Python 3.6.5 -> Python 3.9
- GNU Radio:
 - **3.7.13.4** -> **3.9.2.0**
- Linux:
 - 4.19 -> Debian Bullseye
 - 2018 Release -> 2022 Release
- Raspberry Pi Compatible:
 - **Debian Bullseye -> Raspbian**
- Motor Controls
 - GRBL Configurations 1.1f

Options Output Language: Python Generate Options: QT GUI

Options Output Language: Python Generate Options: QT GUI

3 Upgrades : Updated Software

- Old Software -> Newest Software
- 64 bit OS and 32 bit
- Multiple Back-ups

3 Upgrades : Raspberry Pi Integration

- Portable
 - Smaller Battery Packs
- Easily Replicable
 - \circ $\,$ One Time Setup $\,$
 - \circ $\,$ Micro SD Card $\,$
 - \circ $\,$ No OS installation needed $\,$
- Sufficient USB Ports
- Attachable Screens

3 Upgrades : First Attempt, Raspberry Pi 3

- Very Noisy
- Memory Errors
 - **IDE independent**
 - "DRI2 Failed to authenticate"

3 Upgrades : Pi 3 Vs Pi 4

- Consistent Physical Setup
 - \circ Antenna
 - \circ Location
 - **Distance**
- Consistent Software Setup
 - \circ SD card
 - SDR's
 - $\circ \quad \text{Motor Controllers}$

3 Upgrades : Directional Antennas

- Normalized Around Maximum Gain
- Clipping Data
- Physical Distance
- Transmitter Gain:
 - **RF Gain: 14 -> 0**
 - IF Gain: 47 -> 0

4 Future Work : Potential Projects

- 3-D Pattern Software
- Mechanical Improvements
- Sensors/Error Checking
- Modulation Methods
- Coding/Decoding to Reduce Multipath
- Narrow/Broad-Band Noise Interference Mitigation
- Professional vs Outreach Versions

4 Future Work : Summary

- Open Source Student Maintained
 - Linux
 - \circ GNU Radio Companion
 - \circ Python
 - \circ Arduino
- Updated Software
- Updated Hardware
- Back Up Motor Controllers
- Measurements in Multiple Locations

4 Acknowledgements

- Utah NASA Space Grant Consortium
- Moog Industries
- Weber State
 - $\circ \quad \text{Dan Newton} \quad$
 - Taylor Hansen
 - \circ Ren Fisher
 - Christian Hearn
 - \circ $\,$ Justin Knighton $\,$

