
GNURadio and CEDR: Runtime Scheduling to Heterogeneous Accelerators

Joshua Mack JMACK2545@ARIZONA.EDU
Serhan Gener GENER@ARIZONA.EDU
Ali Akoglu AKOGLU@ARIZONA.EDU

University of Arizona

Jacob Holtom JHOLTOM@ASU.EDU
Alex Chiriyath ACHIRIYA@ASU.EDU
Chaitali Chakrabarti CHAITALI@ASU.EDU
Daniel Bliss DWBLISS@ASU.EDU

Center for Wireless Information Systems and Computational Architectures (WISCA), Arizona State University, Tempe,
AZ, 85281, USA

Anish Krishnakumar ANISH.N.KRISHNAKUMAR@WISC.EDU
Alper Goksoy AGOKSOY@WISC.EDU
Umit Ogras UOGRAS@WISC.EDU

University of Wisconsin-Madison

Abstract

Accelerators in GNURadio have been previously
limited to requiring the selection of an accelera-
tor framework/block at design time. In this pa-
per, we present a preliminary investigation into
supporting two new capabilities with GNURa-
dio: first, we illustrate the ability to execute
GNURadio blocks across a variety of heteroge-
neous accelerators (FPGA and GPU). Second,
we demonstrate that we are able to dynamically
schedule these blocks across our pool of acceler-
ators using easily-customizable scheduling poli-
cies. We do this via a combination of out-of-
tree modules and by embedding GNU Radio it-
self as an application in a heterogeneous run-
time called CEDR (Mack et al., 2022). The
CEDR ecosystem provides a productive environ-
ment for researching the combined challenges of
application design, systems software, and hard-
ware prototyping for heterogeneous systems, and
namely, it provides a flexible intelligent schedul-
ing (IS) interface by which the user can easily
adjust or prioritize how tasks are dispatched at
runtime to the various accelerators present on a
given system. The IS integrates a variety of run-
time schedulers that optimize for metrics such as
application performance and minimum schedul-
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ing algorithm overheads. The IS in tandem with
CEDR improves the performance of applications
through dynamic scheduling by efficiently utiliz-
ing the resources at runtime.

We demonstrate GNURadio running on hetero-
geneous hardware using CEDR across both Xil-
inx Zynq Ultrascale+ ZCU102 and Nvidia Jetson
AGX Xavier systems. We choose three appli-
cations that can leverage FFT acceleration: we
implement a radar correlator in GNURadio, de-
ploy in CEDR and execute it along with non-
GNURadio-based WiFi-TX and Synthetic Aper-
ture Radar applications. We find that, when
GNURadio shares the system with other unre-
lated applications, our integrated IS dispatches
FFT tasks to the accelerator on both the FPGA
and GPU platforms along with the CPU cores
fairly without compromising target throughput
for each application. In summary, we show that
running the GNURadio runtime and applications
inside/with CEDR enables better scheduling op-
tions and easier accelerator access by eliminating
the need for users to partition their workloads at
design time. We believe this is a stepping stone
in broadening GNURadio’s support for hetero-
geneous execution and enabling it to hook more
flexibly into a variety of scheduling heuristics.
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1. Introduction
Heterogeneous computing systems, while offering a large
potential for performance gains relative to homogeneous
counterparts, traditionally pair efficiency gains with reduc-
tions in ease of use and programmer productivity. Plat-
forms such as Domain-specific System on Chip (DSSoC)
devices have been proposed as one such solution for ad-
dressing this divergence with the hope that the focus on a
smaller domain of applications will enable more produc-
tive software and programming abstractions. However, de-
spite the advantages gained through reducing the problem
size, there is a need for an intelligent runtime system and
programming framework to enable effective utilization of
DSSoC platforms and take full advantage of their under-
lying hardware without requiring users to become hard-
ware experts in the process. We envision that the DSSoC
system should also enable a productive programming and
deployment experience in such a way that multiple users
can coexist and share the hardware as a service by sup-
porting execution of any combination of dynamically ar-
riving applications. In traditional heterogeneous program-
ming paradigms, massive amounts of effort are put into
offline performance analysis by domain experts to deter-
mine the portions of an application that must be acceler-
ated, the type of accelerators needed, and effective imple-
mentation strategy for the target hardware configuration.
Low-performance serial implementations are then replaced
with their optimized heterogeneous implementations, and
a static binary that represents a single, expertly-tuned in-
stance of that application is produced. Such static and
offline resource allocation decisions result in a greedily
optimized implementation that assumes it does not share
the heterogeneous accelerators with any other applications.
However, this assumption has the potential to lead to dras-
tic mismanagement or under-utilization of the target hard-
ware in a highly heterogeneous computing environment.
Towards this end, as part of the Domain-Focused Ad-
vanced Software-Reconfigurable Heterogeneous System
on Chip (DASH-SoC) team, we are building a framework
to develop flexible, high-performance, low-power, domain-
specific SoCs, while assuring non-expert programmabil-
ity. We are developing an example SoC for software-
defined RF systems: radios; radars; spectral awareness;
positioning, navigation, and timing; and RF convergence.
DASH allows RF system designers to escape the traditional
power & development-cost limits to innovation (Bliss,
2020; Chiriyath et al., 2021).

One of the key outcomes of this project is the design and
development of a novel open-source ecosystem that we re-
fer to as CEDR: a Compiler-integrated, Extensible, DSSoC
Runtime (Mack et al., 2022). This ecosystem integrates
compile-time application analysis, a Linux-based runtime
system, and an intelligent scheduling framework to holisti-

cally target the aforementioned requirements and capabil-
ities. In this study we present integration of CEDR with
the GNRURadio runtime and demonstrate our ability to de-
ploy GNURadio workflows on both FPGA and GPU based
COTS SoC platforms without requiring users to have prior
knowledge on FPGA or GPU based design experience. We
show that the CEDR and GNURadio integration allows
developers to remain in their familiar programming envi-
ronment, provides users with a hardware-agnostic applica-
tion development experience, empowers them to automati-
cally and dynamically deploy their applications on hetero-
geneous compute systems composed of a pool of general
purpose processors and accelerators. In the following sec-
tions we start with an overview of the CEDR ecosystem fol-
lowed by a discussion on our approach to CEDR and GNU-
Radio integration. We use Radar Correlator applications as
a case study and present its implementation in GNURadio,
compilation through our integrated flow and finally deploy-
ment on Nvidia Jetson AGX Xavier platform. We finally
emulate an SoC composed of a pool of FFT accelerators
and ARM CPU using Xilinx ZCU102 Zynq platform. On
this emulation platform we demonstrate dynamic task to
processing element mapping decision capability where we
execute the GNURadio based Radar Correlator as a contin-
uous process and two signal processing applications, Syn-
thetic Aperture Radar (SAR) and WiFiTX, arrive dynami-
cally.

1.1. Contributions

• GNURadio C++ and Python (via cython3 embedding)
Flowgraphs run in CEDR enabling runtime accelera-
tor selection in GNURadio

• GR OOT Module (gr-cedr) collection of flexi-
ble runtime adaptive accelerator blocks (Found at
https://github.com/wisca/gr-cedr)

• Intelligent scheduler available from GNURadio appli-
cations

1.2. Future Work and Research Directions

• Verify External Hardware RF Source/Sink blocks run-
ning in CEDR

• Enable CustomBuffers in gr-cedr blocks

• Build a GNURadio 4.0 scheduler utilizing the DASH
Intelligent Scheduler

2. Background
2.1. CEDR

As illustrated in Figure 1, CEDR is composed of two com-
ponents: a compilation workflow and a runtime workflow.
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Figure 1. High level architectural overview of CEDR ecosystem.

The compilation workflow is used to convert C/C++ ap-
plications into CEDR-compatible binaries, and the runtime
workflow is leveraged to then parse, schedule, dispatch,
and execute those applications across a heterogeneous pool
of resources on a given compute platform. CEDR pro-
vides these capabilities while remaining independent of any
scheduling heuristic or hardware platform, ensuring that
it can be ported across any number of execution environ-
ments without requiring major development effort to port
any given scheduler to a new SoC platform or vice versa.

In this ecosystem we designed and developed front-end
compilation flow to refactor applications into a sequence
of hardware agnostic function calls and generate an appli-
cation representation in the form of a flexible binary struc-
ture. This representation allows the run time system to
invoke each function call on its supported processing el-
ements (PEs) based on the task to PE mapping decisions
made by the integrated intelligent scheduler (IS) at run-
time. Programmer is given specification for API calls for
key kernels that have support for acceleration. Our front-
end compilation flow refactors applications into a sequence
of hardware agnostic function calls and generates an appli-
cation representation in the form of a flexible binary struc-
ture. We designed and implemented DASH-APIs and vali-
dated their support by both our compile time and run time
system. Here when users make an API call, they do not
need to specify where this task will be executed. The IS
framework makes these scheduling decisions dynamically
in the order of nanoseconds. The goal of the IS framework
is to remove the burden of the user to study the intricate de-
tails of the hardware architecture and processing elements.
It automatically chooses the best PE to execute the ready
tasks as a function of the computational kernels that make
up the tasks and the PE states. For example, if there is a
hardware accelerator tailored for a specific task, IS checks
its current workload and schedules the task to the PE that
maximizes the design objectives, such as performance. IS
achieves this objective by using a suite of machine learn-
ing (ML)-based and traditional algorithms. Our novel ML-
based schedulers formulate the scheduling as a classifica-
tion problem and imitate complex optimization algorithms
with orders of magnitude faster runtime. Similarly, our

suite of schedulers, such as real-time heterogeneous ear-
liest finish time (HEFT-RT) (Fusco et al., 2022), provide a
wide range options to the target users.

CEDR provides runtime capabilities while remaining inde-
pendent of any one scheduling heuristic or hardware plat-
form, ensuring that it can be ported across any number of
execution environments without requiring major develop-
ment effort to port any given scheduler to a new SoC plat-
form or vice versa. We have built a runtime manager that
operates in the Linux user space, operates as a background
Daemon Process, and the user submits jobs for execution
via inter-process communication (IPC) using the Job Sub-
mission Process and allows end users to interact with the
heterogeneous architecture by submitting their compiled
applications as if they are interacting with an HPC system.

The daemon process consists of two key components: the
Worker Threads and the CEDR Management Thread. For
each resource in the system – whether it is a CPU core or
an accelerator – we spawn one worker thread that is tasked
with receiving, executing, and reporting back on work as-
signed to that particular resource. As an example, suppose
we are running on a system with one CPU core (CPU 1) and
one FFT accelerator (FFT 1). In this case, the worker thread
for CPU 1 is, itself, assigned via its processor affinity to
run on CPU 1, and as it receives tasks that are scheduled to
CPU 1, it executes them and reports back to the manage-
ment thread on their completion. Meanwhile, the worker
thread for FFT 1 is tasked with running on one of the CPU
cores and facilitating data transfers to and from the under-
lying accelerator. One of the advantages of this architecture
is that we can easily scale to systems with any number of re-
sources simply by changing the number of worker threads
spawned to manage them. These worker threads are man-
aged using the widely utilized POSIX thread library by the
main CEDR management thread, and when coupled with
the fact that all of the components shown here operate in
Linux userspace, we can see that CEDR is trivially portable
across a wide range of Linux-based SoC platforms.

The CEDR management thread, shown with orange filled
box in Figure 1, operates in a continuous loop of appli-
cation parsing, application PE tracking, and task schedul-
ing on a system where user application binaries arrive dy-
namically. The application parser forms the entry-point
by which applications are received by the runtime. Each
CEDR application is submitted in the form of a flexible bi-
nary format (also known as a “Fat Binary”) that contains
the various invocations needed by each node for each het-
erogeneous PE. As applications are received, the applica-
tion parser reads the provided binary objects and initializes
CEDR’s internal application representation. These parsed
applications are themselves cached and stored as “appli-
cation prototypes” such that, if they are to be submitted
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again in the future, the runtime doesn’t need to re-parse, in-
stead just instantiating another copy. As parsing completes,
applications are handed off to the application PE tracker,
which begins by pushing the head nodes from each appli-
cation – the nodes with empty predecessors lists – into the
runtime’s ready queue for scheduling and dispatch. From
there, tasks are allocated by the user’s specified schedul-
ing heuristic to run on particular PEs by passing them to
their corresponding worker threads and choosing the appro-
priate function that was previously parsed from their plat-
forms list. As tasks are received and executed by the var-
ious worker threads, they signal their completion back to
the application PE tracker, which responds by checking the
dependency resolution of their successor nodes and push-
ing them into the ready queue as necessary, after which the
process repeats. If an application runs out of successors to
enqueue, it is marked as completed by the runtime, timing
logs are generated representing its execution, and the mem-
ory associated with the application instance is released.
These timing logs capture all of the relevant scheduling and
timing information about when each task in a given appli-
cation ran, on which PE it ran, and so on. This cycle of
application parsing, application dispatch, and log genera-
tion repeats indefinitely until an IPC command is received
that signals for the runtime to terminate.

The runtime manager relies on the integrated IS for task
to PE mapping decisions, manages execution of incom-
ing applications to completion, monitors the state of exe-
cution on each PE, and collects performance counters at
task level. CEDR allows users to specify a workload com-
posed of any number and combination of distinct appli-
cations and evaluate performance of pre-silicon hardware
configurations composed of mixtures of ARM CPU cores
and accelerators (e.g., FFT, matrix multiplication). Then,
the runtime process consists of two key components: the
Worker Threads and the CEDR Management Thread. For
each resource in the system – whether it is a CPU core
or an accelerator – we spawn one worker thread that is
tasked with receiving, executing, and reporting back on
work assigned to that particular resource. One of the ad-
vantages of this architecture is that we can easily scale to
systems with any number of resources simply by changing
the number of worker threads spawned to manage them.
These worker threads are managed using the widely uti-
lized POSIX thread library by the main CEDR manage-
ment thread, and when coupled with the fact that all of
the components shown here operate in Linux userspace, we
can see that CEDR is trivially portable across a wide range
of Linux-based SoC platforms. In the literature, various
frameworks have been proposed that enable exploration of
certain aspects of this design space – such as SoC and ap-
plication design without a focus on scheduling (Chen et al.,
2016; Mantovani et al., 2020; Nazarian & Bogdan, 2020;

Shao et al., 2016) or standalone application programming
interfaces that are independent of hardware (Huang et al.,
2019; Sujeeth et al., 2014) – to the best of our knowledge,
no frameworks thus far (Auerbach et al., 2012; Bolchini
et al., 2018; Boutellier et al., 2018; Christodoulis et al.,
2018; Hsieh et al., 2019; Moazzemi et al., 2019; Tan et al.,
2019) have been presented that bring together application
development, resource management, and accelerator de-
sign capabilities into a single unified compilation and run-
time toolchain that targets DSSoC hardware. We believe
that the CEDR ecosystem, with its integrated compile-time
and runtime workflows, empowers researchers to conduct
design space explorations, and consequently, it will help
the research community move towards establishing a more
general understanding of DSSoCs and their broader role
in an era of increasingly heterogeneous computing sys-
tems. We demonstrated capabilities of the integrated soft-
ware ecosystem on FPGA based emulation platforms (Xil-
inx Zynq UltraScale MPSoC-ZCU102, Xilinx Virtex Ultra-
scale+ -VCU128) through successful execution of a wide
variety of workloads composed of randomly arriving mix-
ture of five applications (Pulse doppler, Temporal mitiga-
tion, Radar correlator, SAR RDA, and WiFi TX) with abil-
ity to dispatch tasks to available pool of compute resources
based on heuristic schedulers (Heterogeneous Earliest Fin-
ish Time, Earliest Finish Time, Earliest Task First, Min-
imum Execution Time, Round Robin) along with Imita-
tion Learning (Regression Tree and Deep Neural Network)
based schedulers.

Figure 2 shows an example experiment where we exe-
cuted mixture of low latency applications (Radar Correla-
tor, Temporal Mitigation in Figure 2(a)) and high latency
applications (WiFiTX, Pulse Doppler Figure 2(b)) over 12
different SoC configurations, 29 different job injection and
five different scheduling heuristics. This experiment covers
total of 3480 configurations, and involves scheduling over
10 million tasks. The entire experiment took less than 3
hours on the ZCU102 platform. This is by orders of mag-
nitude faster than cycle accurate and discrete event based
simulators. The DASH software ecosystem is portable
across a wide number of Linux-based systems, ensuring
that effort to migrate across systems is minimal for all de-
velopers involved. We verified portability of our ecosys-
tem across other platforms such as x86, Odroid-XU3, and
Nvidia Xavier GPU through dynamically arriving work-
load scenarios. Because CEDR is portable, we can im-
plement an approach that meets the program goals with
regards to effective utilization of COTS hardware while
also providing a path forward for fully custom hardware
designs.
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Figure 2. Average execution time per application for 12 resource pool configurations, 5 schedulers and 29 injection rates, using (a) low
latency, (b) high latency workloads.

2.2. CEDR Programming Model

Developers in general are incredibly familiar with the con-
tracts and expected behavior that come with APIs. As
such, by developing support for APIs, our aim is to increase
productivity among current DASH software developers by
providing a familiar workflow and the basic idea is to refac-
tor a program into two threads. The first thread would con-
tain the execution for all the extraneous non-kernel code
that an application needs to run correctly (such as one-
time file I/O, printing, or memory allocation and deallo-
cation), and then the second thread contains all the code
that is determined to be “kernels”. The program executes
by handing off back-and-forth between these two threads
by “resolving barriers” in each thread (that are placed to
ensure we preserve the program’s execution). In this work-
flow, from the non-kernel code’s perspective, each kernel
is represented as a self-contained collection of code, and
if we simply were to insert the intelligent scheduler into
that gap between the non-kernel and kernel messaging, it
would be conceivably quite simple to interchangeably swap
those kernel invocations to run on different PEs. As we
can see, this methodology relies on having a well-defined
function-like interface sitting between the kernel and non-
kernel code. And for that, we decided representing our
DASH kernels as API calls as illustrated in Figure 3.

Taking an FFT execution as the motivating example, when
we originally started the project, we first answered the
question of “what does a DASH program look like” with
any arbitrary collection of code or library calls that im-
plement an FFT. While this is still the eventual goal, as
a starting point, because it consisted of arbitrary code, it
was fairly difficult for machines to deeply understand and
reason about. Likewise, because of that, it was difficult
for downstream compiler tooling to effectively map that

code to heterogeneous PEs. As a next step, labels were
introduced into the DASH corpus, and these have proven
to be quite useful for enabling machine classification of
code as we’ve seen in previous ontology results. How-
ever, for current developers and compilers, they were still
a bit difficult to leverage correctly. For developers look-
ing to just test the software toolchain, it was difficult to
know the exact boundaries of where your label should be
placed in the code for the compilation tooling to effectively
recognize it, and for the corresponding compilers, this am-
biguity around kernel entrances/exits made it difficult to
reason about which variables corresponded to which in-
puts/outputs of the kernel, and that made it difficult to swap
those kernels out for implementations on different hard-
ware units.

2.3. CEDR and API Integration

From the user’s perspective, they only need to write code
using a library of APIs in place of their kernels similar to
how previous toolchains required hand-labeling the exist-
ing kernels in their code. The code written with their APIs
is then passed through an LLVM opt pass that swaps out
those API calls for calls to invoke the intelligent scheduler,
and a barrier is inserted into the code that halts execution
while the IS schedules and dispatches that kernel so that
we can ensure we preserve correctness – although the “re-
moval” of these barriers based on dynamic analysis of ex-
ecution dependencies is something we’re actively investi-
gating. An example of this with regards to FFT is provided
in Figure 4

In this case, the user simply needs to write their code us-
ing the DASH FFT API, and then during compilation, that
DASH FFT call is replaced (at the LLVM level) with code
that looks like the tool-generated code on the right. In
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(a) (b)

Figure 3. (a) Kernel, Non-Kernel based application representation (b) API-based representation

the replaced code, a pthread barrier is initialized, the “en-
queue kernel” function is called to push a node into the
intelligent scheduler’s todo queue along with all required
arguments, the IS picks the best invocation of that kernel
(CPU/accelerator) based on the system state, and eventu-
ally it signals completion by resolving the barrier. In the
tool generated code, FFT API call is replaced with the en-
queue kernel function with barriers placed before and after.
This is our way of setting up hooks for the runtime system
so that FFT is dispatched to a PE after all its dependencies
are resolved. We then compile this refactored application
code to generate a flexible binary structure such that each
task in the application can be invoked on any of the process-
ing elements that support that task. For example the binary
for the FFT task has three versions for possible execution
on ARM core, DAP or a dedicated accelerator. This bi-
nary representation gives flexibility to the run time system
on choosing where to invoke each function call among the
supported processing elements. We don’t want application
developer to make greedy choices and implement an appli-
cation with static schedules favoring only an accelerator for
certain tasks because this system will be used by multiple
applications concurrently. More importantly we don’t want
users to worry about how to do workload partitioning and
programming on a complex heterogenous architecture.

For choosing our initial set of APIs, we started by identify-
ing the most common labeled kernels among our DASH
corpus, we came up with set of FFT and GEMM API
calls. With these APIs developed, we took the original
unmodified source code for five of our most frequently

used applications. We measured developer productiv-
ity in a scenario where developers, without prior expo-
sure to our software tooling, ported and validated SAR,
WiFiTX, Pulse Doppler, Radar Correlator and Temporal
Mitigation aapplications, and the average time spent per
developer was approximately 3 hours including the time
to port their code to leverage the DASH-APIs as well
as compile, execute, and validate its functionality. In
summary, the DASH ecosystem comes with a hardware-
software co-design environment that provides a productive
abstraction layer over which software can be programmed
in a hardware-independent manner and then dynamically
mapped and executed over a variety of heterogeneous com-
putation units (Mack et al., 2022).

2.4. Intelligent Scheduler

Heterogeneous SoCs provide substantial improvements in
performance and energy by integrating a variety of hard-
ware accelerators. A myriad of PEs provides an abun-
dance of scheduling decision choices for streaming appli-
cations. Streaming scenarios present significant challenges
to scheduling since the incoming tasks and applications ob-
serve different system states, i.e. busy states of the PEs
and partially filled wait and execution queues. For exam-
ple, an incoming FFT task can potentially be executed in
the general-purpose cores, GPU and dedicated hardware
accelerators. In this case, hardware accelerators are nat-
ural choices since they optimize for specific operations and
provide superior performance and energy efficiency. How-
ever, having a task to wait for highly busy accelerator units
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(a) (b)

Figure 4. API based application development approach (a) FFT API call in the user application (b) Refactored user application with
enqueue kernel and thread barriers
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Figure 5. The intelligent scheduler (IS) framework integrates into CEDR and comprises a variety of heuristic and machine learning
scheduling algorithms.

can override the benefits they provide. So, schedulers must
carefully consider the system state and optimally choose a
PE for a task at runtime to exploit the potential of hetero-
geneous platforms.

Specialized processors such as GPUs and hardware ac-
celerators execute tasks significantly faster than general-
purpose cores, even in the order of nanoseconds. So,
scheduling decisions must incur ultra-low overheads to fa-
cilitate the fast execution of PEs in DSSoCs. Schedul-
ing algorithms are implemented as optimization based ap-
proaches, heuristic methods and machine learning meth-
ods. Approaches that rely on optimization techniques for-
mulate the problem at hand using mathematical expres-
sions, corresponding constraints and objective functions.
Solving the optimization problem can be severely pro-
hibitive in terms of runtimes, and hence cannot be used
for dynamic scheduling in DSSoCs. Heuristics are com-
monly used in practice as means to trade off the schedul-
ing complexity and overheads with the quality of the deci-
sions. They are also tailored to particular objectives such
as performance, power, and energy consumption. To this
end, we introduce the intelligent scheduler (IS) (shown in
Figure 5) which provides a flexible interface to seamlessly
assign tasks to PEs and prioritize them for dispatch to exe-
cution. The IS integrates a suite of schedulers, and provides
the scheduling algorithm choice to the user by integrating
into CEDR.

Heuristic schedulers are tailored to a particular set of sce-
narios and fail to generalize well, and also incur signficant
runtime overheads. Machine learning techniques provide
the adaptability and ability to learn in several environments.
In particular, reinforcement learning (RL) has been used
for scheduling in data clusters. But, it suffers from con-
vergence issues for large problem sizes such as DSSoCs.
RL also demands substantial computational resources and
time to effectively explore the solution space and learn the
optimal decisions. All prior approaches suffer from run-
time overheads, sub-optimality, computational time and re-
source overheads. To address these challenges, we use
an imitation learning (IL)-based scheduling approach that
generates an Oracle using any complex scheduler offline
and approximates it using light-weight decision tree clas-
sifiers at runtime. Generating the Oracle offline allows us
to deploy optimal/near-optimal schedulers offline without
being limited by runtime overheads. The use of supervised
machine learning techniques such as decision trees approx-
imates the complex decisions using light-weight classifiers
that can be easily deployed at runtime. Therefore, IL-based
scheduling approach addresses the challenges of schedul-
ing decision quality, runtime overheads and generalization
to multiple use cases.

Figure 6 provides an overview of the proposed IL-based
scheduling framework. As a reminder, the heterogeneous
SoC under consideration is organized into processing clus-
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ters, each of which contain multiple identical cores. In the
figure, the cores of the same type are shaded by the same
color. Real-world applications are profiled and character-
ized on commercially available hardware platforms to ob-
tain task latency and power consumption estimates. A sim-
ulator or CEDR use the task profiling information, appli-
cation directed flow graphs (DFGs) and scheduling algo-
rithms to generate the Oracle. In this framework, we use a
hierarchical approach to breakdown the complex schedul-
ing problems into smaller sub-problems. So, we generate
the cluster-level Oracle and PE-level Oracles to reduce the
complexity. Then, we train IL policies using any super-
vised machine learning techniques, such as logistic regres-
sion, decision tree classifier and multilayer perceptrons.
The first-level of IL policy predicts the cluster to which a
task should be scheduled to. Then, the second level of IL
policies predict the exact PE within that chosen cluster for
task execution. We then train IL policies, improve them us-
ing data aggregation (DAgger) and utilize them for runtime
evaluation.

2.5. Interaction with the GNURadio Scheduler

The current GNURadio scheduling system operates with a
a thread per block model and execution and and data flow
is driven by backpressure. This appears similar to a com-
pletely fair scheduler to the IS. The IS inside of the CEDR
runtime can then perform predictions and accelerator selec-
tion based on what operations are currently being requested
in each thread as driven by the backpressure.

GNURadio 4.0 is in the process of revising this model
and enabling alternative sceduling algorithms. We intend
to take a future research direction and develop a GR 4.0
scheduler implementation that leverages the IS and the
gr-cedr OOT.

3. GNURadio Interface to CEDR
As discussed previously, CEDR binaries are compiled ap-
plications bundled up as shared libraries with a main en-
trypoint. GNURadio flowgraphs can be formed into this

structure simply through appropriate compilation and link-
ing. C++ only flowgraphs make this very easy through
CMake and a few extra lines to configure the appropriate
build options.

Python flowgraphs can be built into a binary to be submit-
ted to CEDR by leveraging Cython3 to embed an inter-
preter into a shared binary (cython3 --embed). This
adds an additional step and time between building the flow-
graph and execution time, but as CEDR improves and
GNURadio evolves, we expect to be able to elimniate this
additional complexity.

Once the flowgraph has been compiled and linked with the
adapted process, the GNURadio flowgraph is then launch-
able within the CEDR runtime.

The gr-cedr Out-of-Tree (OOT) Module provides API
calls and blocks for each of CEDR’s supported runtime
flexible accelerators.

3.1. CEDR/libdash API

CEDR is accompanied by a library called libdash that
implements a number of traditional signal processing op-
erations and includes accelerated implemntations for mul-
tiple platforms. These platforms include general purpose
CPU, GPU, FPGA, and custom silicon accelerator blocks,
such as the DSSoC-DASH Systolic Array Processor and
other silicon accelerators.

3.2. Blocks

Currently, there is only one fully implemented block within
the gr-cedr OOT. This blocks wraps arbitrary dimension
FFT operations with CPU, GPU, FPGA, and systolic ar-
ray implementations, and is able to dynamically switch be-
tween them at runtime.

CEDR and libdash already have a number of imple-
mented operations available to accelerate and we intend to
quickly implement more blocks leveraging those APIs.
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3.3. Applications

We developed a simple range correlator in GNURadio as
shown in Figure 7 to demonstrate broadened support for
DASH Runtime integration into other runtime frameworks
where the GNURadio user can instantly leverage DASH
runtime and its scheduler, implement application flow-
graphs, and compile for heterogeneous SoC execution.

Accelerators in GNU Radio have been previously lim-
ited to requiring the selection of an accelerator tor frame-
work/block at design time. In this study, we present a pre-
liminary investigation into supporting two new capabilities
with GNU Radio: first, we illustrate the ability to execute
GNU Radio blocks across a variety of heterogeneous ac-
celerators. Second, we demonstrate that we are able to dy-
namically schedule these blocks across our pool of accel-
erators using easily-customizable scheduling policies. This
work shows the broadened support for DASH runtime in-
tegration into other runtime frameworks where GNURadio
developer is able to seamlessly execute applications com-
piled for the target off the shelf SoC platform and benefit
from the accelerator support through CEDR based execu-
tion. We do this via a combination of out-of-tree modules
and by embedding GNU Radio itself as an application in a
heterogeneous runtime called CEDR.

Figure 8 shows the execution of native GNURadio appli-
cation (Radar Correlator) with other DASH applications
(WiFiTX and SAR) on an SoC composed of 2 FFT accel-
erators and 3 ARM cores on ZCU102 MPSoC where ap-
plications arrive dynamically, integrated scheduler handles
task to PE mapping decisions and CEDR runtime work-
flow manages execution of all applications in coordination
with the GNURadio runtime. We find that, when GNU
Radio shares the system with other unrelated applications,
our integrated IS dispatches FFT tasks to the accelerator
along with the CPU cores fairly without compromising tar-
get throughput for each application. In summary, we show
that running the GNU Radio runtime and applications in-
side/with CEDR enables better scheduling options and eas-
ier accelerator access by eliminating the need for users to
partition their workloads at design time. We believe this
is a stepping stone in broadening GNU Radio’s support for
heterogeneous execution and enabling it to hook more flex-
ibly into a variety of scheduling heuristics. Taken together,
the DASH software ecosystem is a capable environment
for enabling seamless deployment of user applications and
exploring the boundaries of productive application devel-
opment, resource management development, and hardware
configuration analysis for heterogeneous architectures.

4. Intelligent Scheduler
This section presents the demonstration of the intelligent
IL-based scheduler (described in Section 2.4) for a work-
load that comprises a mix of GNU Radio and other DASH
applications on two different platforms, Xilinx Zynq Ul-
traScale+ ZCU102 FPGA and Nvidia Jetson AGX Xavier.
Specifically, the pulse Doppler application constitutes the
GNU Radio application. WiFiTX and SAR constitute the
other DASH applications chosen for this demonstration. As
discussed in Section 2.4, we first instrument CEDR to run
a complex scheduler and generate the Oracle. We choose
the EFT heuristic for these experiments. During this step,
CEDR populates the list of features and labels for each in
task the workload. This information is then used to train a
DT classifier in Python using the scikit-learn library. The
trained model is then plugged back into CEDR to perform
runtime scheduling for the workload with streaming appli-
cation arrivals. The rest of the section focuses on specific
details and results on the two evaluation platforms.

4.1. Xilinx Zynq UltraScale+ ZCU102

To demonstrate the IL-based scheduling approach on Zynq
ZCU102 FPGA, we choose an SoC configuration with 3
CPU cores and 2 FFT hardware accelerators. The EFT
scheduler uses only one of the CPUs and both FFT hard-
ware accelerators for scheduling at runtime. As a conse-
quence, the DT-based IL policy also performs likewise, as
shown in Figure 9(a). We can observe that the hardware ac-
celerators are the obvious PE choice for the FFT dominated
workload. The scheduling policy only reverts to the CPU
core when both hardware accelerators are busy executing
other tasks and have a significant waiting time. Therefore,
the IL scheduling policy effectively utilizes the PEs at run-
time.

4.2. Nvidia Jetson AGX Xavier

On the Nvidia Jetson AGX Xavier platform, we choose a
resource configuration of 2 CPU cores and the GPU to ex-
ecute the workload. The GPU offers substantially lower
execution times than the CPU cores and hence, a majority
of the workload is executed on the GPU. The scheduling
policy prefers to execute the tasks on the CPU cores only
when the GPU is significantly blocked for a long period of
time, as shown in Figure 9(b).

4.3. Summary

We successfully demonstrate that the IL-based scheduling
polices are applicable and portable across different plat-
forms. Furthermore, the framework seamlessly integrated
into CEDR, thereby providing an easy plug-and-play envi-
ronment for user evaluation.
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Figure 7. GNURadio Flow graph used for the radar correlator example application with run-time accelerator selection

5. Conclusion
In this paper, we demonstrate the ability to execute GNU-
Radio flowgraphs across a variety of heterogeneous ac-
celerators (FPGA and GPU) by replacing common com-
putational blocks with those from the gr-cedr OOT
module. We also demonstrate the dynamic scheduling of
these blocks across our pool of accelerators using easily-
customizable scheduling policies at runtime.
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Figure 8. (a) GNU radio application (Radar Correlator) executing with dynamically arriving WiFiTx and SAR applications through
CEDR on a SoC with 3 ARM cores and 2 FFT accelerators emulated on ZCU120 FPGA platform. (b) Waterfall image collected at
runtime from CEDR based execution is identical to the output of the baseline implementation.
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Figure 9. Gantt charts of the workload execution on (a) Xilinx Zynq ZCU102 FPGA and (b) Jetson AGX Xavier for a workload com-
prising the GNU Radio Pulse Doppler, WiFiTX and SAR applications.
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