
GNURadio and CEDR:
Runtime Scheduling to Heterogeneous

Accelerators

1

Who are we?

2

Who are we?

Anish NK

PhD Student

Jacob Holtom

PhD Student

Serhan Gener

PhD Student

Chaitali Chakrabarti Ali Akoglu

Dan Bliss
Joshua Mack

PhD Student
Umit Ogras

3

Motivation

● Heterogeneous computation holds a lot of potential, but it is typically difficult
to effectively use

● One approach: domain-specific processors
○ Restrict the scope of the problem while still enabling potential large gains

● Goal: develop a useable, domain-specific, coarse-scale heterogeneous processor

4

CEDR - Compiler-Integrated, Extensible DSSoC Runtime

CEDR - https://ua-rcl.github.io/CEDR/
J. Mack et al “CEDR - A Compiler-integrated, Extensible DSSoC Runtime,” ACM Transactions
on Embedded Computing Systems (TECS), April 2022, https://doi.org/10.1145/3529257

● Runtime for heterogeneous systems
that enables:
○ Hardware agnostic application

development
○ Flexible integration of various

software and hardware schedulers
○ Support for dispatching tasks to

arbitrary hardware IPs
● Portable

○ Runs in Linux userspace
○ Daemon-based runtime
○ Validated across numerous

FPGA/GPU & arm/aarch64/x86
systems

● Scalable
○ Supports arbitrary mixtures of

dynamically submitted workloads

5

https://ua-rcl.github.io/CEDR/
https://doi.org/10.1145/3529257

CEDR - Runtime Model

6

CEDR for Application Developers - API-based Development
• Operational principles:
○ Users write code using hardware-agnostic APIs
○ CEDR dynamically loads a set of compatible API

implementations at startup
○ Each API internally calls into CEDR
○ CEDR schedules each of the incoming API tasks

dynamically to the system’s resources & signals
completion to user application when done

User-written Code

CEDR-equivalent code 7

Integration With GNURadio

8

● Developed an OOT module: gr-cedr1

● Blocks in gr-cedr make calls to CEDR
APIs

○ Flowgraphs using these blocks are
either written directly in C++ or
converted via Cython

● When run in CEDR, these flowgraphs
are dynamically scheduled and
dispatched to heterogeneous resources

● These same binaries are portable –
without changes – to other
heterogeneous systems running CEDR

1. gr-cedr: https://github.com/WISCA/gr-cedr

https://github.com/WISCA/gr-cedr

Demo - Setup
● Goal: demonstrate dynamic, heterogeneous scheduling

of GNURadio blocks in CEDR via gr-cedr

● Scenario: execute a simple correlator application with
and without GPU-acceleration on an Nvidia Jetson
AGX Xavier

● Validation: monitor waterfalls generated from the
standalone GNURadio & CEDR-based executions

9

Demo - Presentation

GNU Radio in CEDR

10

Summary & Future Directions
Summary

● Presented CEDR, a runtime for use on any Linux-based heterogeneous system
along with an OOT module that illustrates how to integrate GNURadio
applications into this runtime

● Demonstrated the ability to make dynamic, heterogeneous scheduling
decisions for GNURadio blocks via a basic correlator flowgraph

Future Directions

● Expand the scope of supported blocks within the OOT module

● Work with the community to strive towards integration with GR4.0 newsched

11

Thank you, GRCon!

Questions?

12

Backup

13

GNURadio + DASH Runtime Integration Demo
● Goal:

○ Demonstrate Radar Correlator implemented
with DASH APIs in GNURadio using CEDR

● Scenario:
○ Execute 3 applications concurrently: Radar

Correlator runs as a continuous process along
with WiFi Tx and SAR

● Process:
○ Show API based Radar Correlator in GNURadio
○ Generate binary for CEDR and execute
○ Show ARM Cores and FFT accelerators shared

by three applications for FFT tasks
● Validation:

○ Monitor waterfalls generated from CPU and
CEDR based execution of Radar Correlator

SoC Configuration:
2 FFT accelerators and
3 ARM Cores on Xilinx
ZCU102 MPSoC
Workload: 90 WiFi, 2
SAR, 1 Radar Correlator

14

CEDR - Performance Counters + Workload Profiling

15

- Integrated Performance Application Programming Interface (PAPI) counters

- Enables low-level performance profiling and workload characterization without changes in the user code
at the granularity of individual kernels/DAG nodes

- Xilinx ZCU102: 113 different performance counters
- perf::INSTRUCTIONS, perf::CACHE-MISSES, perf::BRANCHES, perf::STALLED-CYCLES-FRONTEND …

Large Scale Design Space Explorations
• 3480 configurations
• Scheduling 10 million

total tasks on an
off-the-shelf SoC < 3
hours

• Orders of magnitude
faster than
cycle-accurate and
discrete-event
simulators

16

Is acceleration always the best choice?

17

DSSoC should provide users with a development environment where application
programmers can design their applications in a hardware-agnostic manner

MET EFT
High latency workload, 3 CPUs and 1 FFT, oversubscribed system (injection rate 2000 Mbps), total of 2610 FFT tasks

Is a scheduler with the best “cumulative execution time”
performance always the best choice †?

● There is a trade-off between quality and complexity of scheduling decisions
○ ETF makes good decisions
○ When system is oversubscribed with high injection rate simple scheduler such as round robin

becomes desirable

High latency workload, 3 CPUs and 1 FFT

† A. Goksoy, A. Krishnakumar, S. Hassan, A. Farcas, A. Akoglu, R. Marculescu and U. Ogras, “DAS: Dynamic
Adaptive Scheduling for Energy-Efficient Heterogeneous SoCs,” Embedded Systems Letters, vol 14, no 1, pp. 51-54,
March 2022. https://doi.org/10.1109/LES.2021.3110426

18

Portability
Verified CEDR across a number of different platforms

● Xilinx ZCU102

● Xilinx VCU128

● HTG-960 (Xilinx VU19P)

● Nvidia Jetson AGX Xavier

● Avnet Ultra96-v2

● Various x86 systems (CPU + GPU)

19

Sample Gantt Charts

20

