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Motivation
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e Heterogeneous computation holds a lot of potential, but it is typically difficult

0.1

to effectively use
® One approach: domain-specific processors
o Restrict the scope of the problem while still enabling potential large gains
e Goal: develop a useable, domain-specific, coarse-scale heterogeneous processor

A

COLLEGE OF ENGINEERING

Electrical & Computer
Engineering




CEDR - Compiler-Integrated, Extensible DSSoC Runtime

e Runtime for heterogeneous systems
that enables:

o Hardware agnostic application
development
o Flexible integration of various
software and hardware schedulers
o  Support for dispatching tasks to
arbitrary hardware IPs
e Portable
o Runs in Linux userspace
o Daemon-based runtime
o Validated across numerous
FPGA/GPU & arm/aarch64/x86
systems
e Scalable
o Supports arbitrary mixtures of

A

dynamically submitted workloads
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CEDR - https://ua-rcl.github.io/CEDR/

J. Mack et al “CEDR - A Compiler-integrated, Extensible DSSoC Runtime,” ACM Transactions
on Embedded Computing Systems (TECS), April 2022, https://doi.org/10.1145/3529257 5
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CEDR - Runtime Model
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CEDR for Application Developers - API-based Development

* Operational principles:

o Users write code using hardware-agnostic APIs

o CEDR dynamically loads a set of compatible API
implementations at startup

o Each API internally calls into CEDR

o CEDR schedules each of the incoming API tasks

dynamically to the system’s resources & signals
completion to user application when done

R
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#include

int OA
double *input = (double*) malloc..
double *output = (double*) malloc..

(input, output, size, forwardTrans);

User-written Code

void DASH_FFT(double* input, double* output, size_t size, bool isForwardTransform)

void DASH_GEMM(double* A_re, double* A_im,
double* B_re, double* B_im,
double* C_re, double* C_im, size_t Row_A, size_t Col_A, size_t Col_B)

void DASH_FIR(double* input_re, double* input_im,
double* filter_re, double* filter_im,
double* output_re, double* output_im, size_t input_len, size_t filter_len)

void DASH_SpectralOpening(double* input, double* output, size_t io_len, size_t window_len);

void DASH_CIC(int* input_re, int* input_im,
int* output_re, int* output_im,
size_t input_len, unsigned int rate_change,
unsigned int dif_delay, unsigned int len, bool is_up);

#include

int OA
double *input = (double*) malloc..
double *output = (double*) malloc..

pthread_barrier_t kernel_ 1 barrier

| (&kernel 1 barrier, nullptr, 2);

( , &input, &output, &size,
&forwardTrans, &kernel 1 barrier);

(&kernel_1_barrier);

CEDR-equivalent code



Integration With GNURadio

e Developed an OOT module: gr-cedr!

= GNU Radio App  EEEE WiFi TX SAR
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dispatched to heterogeneous resources

e These same binaries are portable -
without changes - to other
heterogeneous systems running CEDR
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Demo - Setup

e Goal: demonstrate dynamic, heterogeneous scheduling o 110 e
of GNURadio blocks in CEDR via gr-cedr :j-m [ Wi old
2 130
e Scenario: execute a simple correlator application with % 200
and without GPU-acceleration on an Nvidia Jetson ' '
AGX Xavier 50
-90
e Validation: monitor waterfalls generated from the - o
standalone GNURadio & CEDR-based executions £ -
E »120*%
e A e
o - o

Add begin tag: ()
Offset: 0
Length: 0

FFT
FFT Size: 128
Forward/Reverse: Reverse

ZMQ PUB Sink
Vector Length: 128
Address: tcp:/1....0.1:50001
Timeout (msec): 100

Pass Tags: No

Filter Key:

Fast Multiply Const
Constant: 7.8125m
Vector Length: 128

Multiply
Vector Length: 128

Window:
Shift: No
Num. Threads: 1

File Source
File: rx_pulses.bin
Repeat: Yes
Vector Length: 128
Add begin tag: ()
Offset: 0
Length: 0

FFT
FFT Size: 128
Forward/Reverse: Forward
Window:
Shift: No
Num. Threads: 1

Processor
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Demo - Presentation

GNU Radio in CEDR
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Summary & Future Directions

Summary

e Presented CEDR, a runtime for use on any Linux-based heterogeneous system
along with an OOT module that illustrates how to integrate GNURadio
applications into this runtime

e Demonstrated the ability to make dynamic, heterogeneous scheduling
decisions for GNURadio blocks via a basic correlator flowgraph

Future Directions
e Expand the scope of supported blocks within the OOT module

e Work with the community to strive towards integration with GR4.0 newsched
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Thank you, GRCon!

Questions?
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GNURadio + DASH Runtime Integration Demo

e Goal: o

FFT Length (Vector Length): 128

o Demonstrate Radar Correlator implemented
with DASH APIs in GNURadio using CEDR
e Scenario:

File Source
le:

Repeat: Yes
Vec Length: 128
‘Add begin tag: ()
Offset: 0

FFT Length (Vector Length): 128

2ZMQ PUB Sink
Vec Length: 128
Address:
Timeout (msec): 100
Pass Tags: No

Multiply
Vec Length: 128

FFT Length (Vector Length): 126

CEDR Application Scheduling | |Platform-specific|

Binary Heuristic Kernel Binaries Output Logs

o Execute 3 applications concurrently: Radar

J | ! 1

CEDR
Job Submission
App & PE |
Trackers. 2
Application
Parser

Process
CEDR Management Thread

Shared Memory
IpC

Correlator runs as a continuous process along
with WiFi Tx and SAR
e Process:
o Show API based Radar Correlator in GNURadio

CEDR Daemon Process

o  Generate binary for CEDR and execute
o Show ARM Cores and FFT accelerators shared
by three applications for FFT tasks
e Validation:
o  Monitor waterfalls generated from CPU and
CEDR based execution of Radar Correlator

CEDR Runtime Workflow

© Kususwi
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SoC Configuration:
2 FFT accelerators and
3 ARM Cores on Xilinx
2.CU102 MPSoC
Workload: 90 WiFi, 2
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CEDR - Performance Counters + Workload Profiling

- Integrated Performance Application Programming Interface (PAPI) counters

- Enables low-level performance profiling and workload characterization without changes in the user code

at the granularity of individual kernels/DAG nodes

- Xilinx ZCU102: 113 different performance counters

perf::INSTRUCTIONS, perf::CACHE-MISSES, perf::BRANCHES, perf::STALLED-CYCLES-FRONTEND ...

Applications Instructions | Branches | Branch Misses | L1 Cache Loads | L1 Cache Misses
+ Radar Correlator 158341 6273 958 69348 1435
leripba 3543527 | 349478 11944 1351507 4063
Mitigation
Pulse Doppler 15016980 686875 80525 6484258 192936
WiFi-TX 9861806 1102819 60703 3339442 11475

‘ Task Name

Instructions

Branches

Branch Misses

L1 Cache Loads

L1 Cache
Misses

A

Head Node

728

65

43 476

38

Modulation

Linear Frequency

13417

875

110 6146

189

FFT_0

33411

1299

204 14781

384

FFT_1

47703

1398

126 21029

317

Multiplication

23607

382

54 10499

176

IFFT

23556

667

64 10010

195

Find maximum

15919

1587

357 6407

136
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Large Scale Design Space Explorations

12 Hardware configurations
° : 3 CPUs (C1-C3), 1 FFT (F0-F1), 1 MMULT (Mo0-M1)
3480 con ﬁ g ur at 10ns 5 Schedulers (SIMPLE, MET, EFT, ETF, HEFTRT)
. °11° 2 Workloads (High latency, Low latency) (Table 2)
y S C h € du l 1n g 1 O mi l l 10N Input Configurations 29 Injection rates
High latency (29 points between 10-2000 Mbps)
tOtal tas ks on an Low latency (29 points between 1-1000 Mbps)
Average cumulative execution time/ application
Off_th €-S h elf S 0] C < 3 Output Metrics P HVErage exect.mon tite | 5pp hcaFlon.
verage scheduling overhead / application
Average resource utilization ratio
hours
Applietion Avg. Exec. Time Task FFT MMULT
] CPU Count S t S t
* Orders of magnitude fems) pudl | EPEOY | SR
Radar
faster thal‘l Correlator 0.82 1 4
Temporal Mitigation 4.39 11 v
WiFi TX 16.12 93 v
cycle-accurate and Pufse Doppler T
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Is acceleration always the best choice?

DSSoC should provide users with a development environment where application
programmers can design their applications in a hardware-agnostic manner

BN WiFi-TX B Pulse Doppler BN WiFi-TX M Pulse Doppler
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High latency workload, 3 CPUs and 1 FFT, oversubscribed system (injection rate 2000 Mbps), total of 2610 FFT tasks
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Is a scheduler with the best “cumulative execution time”
performance always the best choice T?

e There is a trade-off between quality and complexity of scheduling decisions

o ETF makes good decisions
o  When system is oversubscribed with high injection rate simple scheduler such as round robin
becomes desirable
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High latency workload, 3 CPUs and 1 FFT
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® RR @ MET @ EFT @ ETF @ HEFTg

Portability

Verified CEDR across a number of different platforms
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e Xilinx ZCU102

Hardware Configurations

e Xilinx VCU128

e HTG-960 (Xilinx VU19P)
e Nvidia Jetson AGX Xavier
e Avnet Ultra96-v2

e Various x86 systems (CPU + GPU)
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Sample Gantt Charts

BN GNU Radio App BB WiFi TX SAR
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