GNURadio and CEDR:
Runtime Scheduling to Heterogeneous
Accelerators

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

Who are we?

Arizona State
University

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

®

THE UNIVERSITY UNIVERSITY OF
OF ARIZONA MICHIGAN

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

GENERAL DYNAMICS
Mission Systems

Who are we?

A

THE UNIVERSITY
OF ARIZONA

Serhan Gener

PhD Student

Joshua Mack

PhD Student

Ali Akoglu

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

Arizona State

University

‘M% Jacob Holtom

: @} PhD Stud
2N tudent

e

Dan Bliss

o

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Motivation

Computational Power Efficiency r

=

System on Chip

:_. Scalar
U Processor
i_ Vector
| Processor

GOP/s/W
—
=)

Chip Network

—

3

h 4

A

Application
Specific

Kernel

90 65 45 32 22 14 \:—‘ 4
Technology Node (nm)

e Heterogeneous computation holds a lot of potential, but it is typically difficult

0.1

to effectively use
® One approach: domain-specific processors
o Restrict the scope of the problem while still enabling potential large gains
e Goal: develop a useable, domain-specific, coarse-scale heterogeneous processor

A

COLLEGE OF ENGINEERING

Electrical & Computer
Engineering

CEDR - Compiler-Integrated, Extensible DSSoC Runtime

e Runtime for heterogeneous systems
that enables:

o Hardware agnostic application
development
o Flexible integration of various
software and hardware schedulers
o Support for dispatching tasks to
arbitrary hardware IPs
e Portable
o Runs in Linux userspace
o Daemon-based runtime
o Validated across numerous
FPGA/GPU & arm/aarch64/x86
systems
e Scalable
o Supports arbitrary mixtures of

A

dynamically submitted workloads

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

LI
-
o [(Rl
<o | N |
\/

MMULT 1 ‘

User Application

¥
Platform-independent
Kernel APIs

Shared Object
psa

Link CPU Kernel

I |

Standalone
Application Binary

|

$58201d UOISSIWNS O
da3d

CEDR Application
Binary M

CEDR Compilation Workflow

|

odl Alowsy pareys

Scheduling
Heuristic

Platform-specific
Kernel Binaries

! t

Worker Threads for Managing Each CPU or
Accelerator

Output Logs

1)
¥ ¥
App & PE
Trackers

*

Application
Parser

CEDR Management Thread

,,,,, +| Scheduler |

CEDR Daemon Process

CEDR Runtime Workflow

CEDR - https://ua-rcl.github.io/CEDR/

J. Mack et al “CEDR - A Compiler-integrated, Extensible DSSoC Runtime,” ACM Transactions
on Embedded Computing Systems (TECS), April 2022, https://doi.org/10.1145/3529257 5

https://ua-rcl.github.io/CEDR/
https://doi.org/10.1145/3529257

CEDR - Runtime Model

A

Y

Y

Y

v

Input Queue

Worker Thread

"Management"
CPU Core

Configure via AXI4 | Revere

Transfer to Accelerator (DMA)

Await Completion

Transfer from Accelerator (DMA)

Input Queue Input Queue Input Queue Input Queue
Worker Thread Worker Thread Worker Thread Worker Thread
RENE REF RERS PE 4
(@, (CRI (CRUS (EBUS
Accelerator) Accelerator) Accelerator) Accelerator)
Output Queue Output Queue Output Queue Output Queue

App & PE

» Scheduler

Trackers

t

Application
Parser

]

CEDR Management Thread

Output Queue

I

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

Accelerator (e.g. FFT)

CEDR for Application Developers - API-based Development

* Operational principles:

o Users write code using hardware-agnostic APIs

o CEDR dynamically loads a set of compatible API
implementations at startup

o Each API internally calls into CEDR

o CEDR schedules each of the incoming API tasks

dynamically to the system’s resources & signals
completion to user application when done

R

COLLEGE O.F ENGINEERING
Electrical & Computer
Engineering

#include

int OA
double *input = (double*) malloc..
double *output = (double*) malloc..

(input, output, size, forwardTrans);

User-written Code

void DASH_FFT(double* input, double* output, size_t size, bool isForwardTransform)

void DASH_GEMM(double* A_re, double* A_im,
double* B_re, double* B_im,
double* C_re, double* C_im, size_t Row_A, size_t Col_A, size_t Col_B)

void DASH_FIR(double* input_re, double* input_im,
double* filter_re, double* filter_im,
double* output_re, double* output_im, size_t input_len, size_t filter_len)

void DASH_SpectralOpening(double* input, double* output, size_t io_len, size_t window_len);

void DASH_CIC(int* input_re, int* input_im,
int* output_re, int* output_im,
size_t input_len, unsigned int rate_change,
unsigned int dif_delay, unsigned int len, bool is_up);

#include

int OA
double *input = (double*) malloc..
double *output = (double*) malloc..

pthread_barrier_t kernel_ 1 barrier

| (&kernel 1 barrier, nullptr, 2);

(, &input, &output, &size,
&forwardTrans, &kernel 1 barrier);

(&kernel_1_barrier);

CEDR-equivalent code

Integration With GNURadio

e Developed an OOT module: gr-cedr!

= GNU Radio App EEEE WiFi TX SAR

e Blocks in gr-cedr make calls to CEDR T ———————
API S g €013 1 o A R AR
¢ Ut 210 T 0 NI

ssor

o 1t L. T A A

o Flowgraphs using these blocks are B A
either written directly in C++ or / /Q Time (ms) \n\

C 0 nve rte d Vi a Cyth O n W GNU Radio App WSS WiFi TX SAR mm GNU Radio App WEER WiFi TX SAR
2 HENEI0 0 O R O O RO 1 _ f2 il NN NN
ﬁ 1IN0 00 0 6 A M 0 E e (UL LU O L DL
e When runin CED R, these ﬂOng‘aphS Ecpuz|l|ll||l::n==|:;:m7l|-|||\|| Eiﬁﬂi:::

o L. S O 0 O cpul [NIMNINNENERRINIINENINN

are dynamlcally SCheduled and 100 200 T'300(40)0 500 600 1500 1600 _}700(1)800 1900
dispatched to heterogeneous resources

e These same binaries are portable -
without changes - to other
heterogeneous systems running CEDR

A

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering 1. gr-cedr: https://github.com/WISCA/gr-cedr 8

https://github.com/WISCA/gr-cedr

Demo - Setup

e Goal: demonstrate dynamic, heterogeneous scheduling o 110 e
of GNURadio blocks in CEDR via gr-cedr :j-m [Wi old
2 130
e Scenario: execute a simple correlator application with % 200
and without GPU-acceleration on an Nvidia Jetson ' '
AGX Xavier 50
-90
e Validation: monitor waterfalls generated from the - o
standalone GNURadio & CEDR-based executions £ -
E »120*%
e A e
o - o

Add begin tag: ()
Offset: 0
Length: 0

FFT
FFT Size: 128
Forward/Reverse: Reverse

ZMQ PUB Sink
Vector Length: 128
Address: tcp:/1....0.1:50001
Timeout (msec): 100

Pass Tags: No

Filter Key:

Fast Multiply Const
Constant: 7.8125m
Vector Length: 128

Multiply
Vector Length: 128

Window:
Shift: No
Num. Threads: 1

File Source
File: rx_pulses.bin
Repeat: Yes
Vector Length: 128
Add begin tag: ()
Offset: 0
Length: 0

FFT
FFT Size: 128
Forward/Reverse: Forward
Window:
Shift: No
Num. Threads: 1

Processor

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

40.00 60.00 80.00 100.00 120.00

YOO O
0O Al
0O OOt
e AR O O

0

o
°
<
@

a
°
£
N

20 40 60

Time (ms)

80 100

Demo - Presentation

GNU Radio in CEDR

EEEEEEEEEEEEEEEEEEEE
Electrical & Computer
Engineering

A

10

Summary & Future Directions

Summary

e Presented CEDR, a runtime for use on any Linux-based heterogeneous system
along with an OOT module that illustrates how to integrate GNURadio
applications into this runtime

e Demonstrated the ability to make dynamic, heterogeneous scheduling
decisions for GNURadio blocks via a basic correlator flowgraph

Future Directions
e Expand the scope of supported blocks within the OOT module

e Work with the community to strive towards integration with GR4.0 newsched

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

11

A

EEEEEEEEEEEEEEEEEEEE
Electrical & Computer
Engineering

Thank you, GRCon!

Questions?

12

A

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

Backup

13

GNURadio + DASH Runtime Integration Demo

e Goal: o

FFT Length (Vector Length): 128

o Demonstrate Radar Correlator implemented
with DASH APIs in GNURadio using CEDR
e Scenario:

File Source
le:

Repeat: Yes
Vec Length: 128
‘Add begin tag: ()
Offset: 0

FFT Length (Vector Length): 128

2ZMQ PUB Sink
Vec Length: 128
Address:
Timeout (msec): 100
Pass Tags: No

Multiply
Vec Length: 128

FFT Length (Vector Length): 126

CEDR Application Scheduling | |Platform-specific|

Binary Heuristic Kernel Binaries Output Logs

o Execute 3 applications concurrently: Radar

J | ! 1

CEDR
Job Submission
App & PE |
Trackers. 2
Application
Parser

Process
CEDR Management Thread

Shared Memory
IpC

Correlator runs as a continuous process along
with WiFi Tx and SAR
e Process:
o Show API based Radar Correlator in GNURadio

CEDR Daemon Process

o Generate binary for CEDR and execute
o Show ARM Cores and FFT accelerators shared
by three applications for FFT tasks
e Validation:
o Monitor waterfalls generated from CPU and
CEDR based execution of Radar Correlator

CEDR Runtime Workflow

© Kususwi

COLLEGE OF ENGINEERING

Electrical & Computer

I

SoC Configuration:
2 FFT accelerators and
3 ARM Cores on Xilinx
2.CU102 MPSoC
Workload: 90 WiFi, 2
SAR, 1 Radar Correlator

m GNURadio App WS WiFi TX

¢ 1N O
et N0 A e
3 N A A o
- 2 [/ YN A A o
cpu L TR G S

200

SAR

ocessor

400
Time (ms)

600

A

Engineering

14

CEDR - Performance Counters + Workload Profiling

- Integrated Performance Application Programming Interface (PAPI) counters

- Enables low-level performance profiling and workload characterization without changes in the user code

at the granularity of individual kernels/DAG nodes

- Xilinx ZCU102: 113 different performance counters

perf::INSTRUCTIONS, perf::CACHE-MISSES, perf::BRANCHES, perf::STALLED-CYCLES-FRONTEND ...

Applications Instructions | Branches | Branch Misses | L1 Cache Loads | L1 Cache Misses
+ Radar Correlator 158341 6273 958 69348 1435
leripba 3543527 | 349478 11944 1351507 4063
Mitigation
Pulse Doppler 15016980 686875 80525 6484258 192936
WiFi-TX 9861806 1102819 60703 3339442 11475

‘ Task Name

Instructions

Branches

Branch Misses

L1 Cache Loads

L1 Cache
Misses

A

Head Node

728

65

43 476

38

Modulation

Linear Frequency

13417

875

110 6146

189

FFT_0

33411

1299

204 14781

384

FFT_1

47703

1398

126 21029

317

Multiplication

23607

382

54 10499

176

IFFT

23556

667

64 10010

195

Find maximum

15919

1587

357 6407

136

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

15

Large Scale Design Space Explorations

12 Hardware configurations
° : 3 CPUs (C1-C3), 1 FFT (F0-F1), 1 MMULT (Mo0-M1)
3480 con ﬁ g ur at 10ns 5 Schedulers (SIMPLE, MET, EFT, ETF, HEFTRT)
. °11° 2 Workloads (High latency, Low latency) (Table 2)
y S C h € du l 1n g 1 O mi l l 10N Input Configurations 29 Injection rates
High latency (29 points between 10-2000 Mbps)
tOtal tas ks on an Low latency (29 points between 1-1000 Mbps)
Average cumulative execution time/ application
Off_th €-S h elf S 0] C < 3 Output Metrics P HVErage exect.mon tite | 5pp hcaFlon.
verage scheduling overhead / application
Average resource utilization ratio
hours
Applietion Avg. Exec. Time Task FFT MMULT
] CPU Count S t S t
* Orders of magnitude fems) pudl | EPEOY | SR
Radar
faster thal‘l Correlator 0.82 1 4
Temporal Mitigation 4.39 11 v
WiFi TX 16.12 93 v
cycle-accurate and Pufse Doppler T
discrete-event e e e e e ®
simulators

800

..»:::‘.t:a":\ oo oo

o
L potttd o Y
0000° ges" . 1T

6001

400

200

(sw) ddy / awi] uoindax3y *‘BAY

COLLEGE OF ENGINEERING =

Electrical & Computer rRnfdgeeaaca
. . F1 F1 FO FQ F1

Engineering MO ML MO ML MO M1 Mo M1 Mo M1 o

Hardware Configurations

A

g P $p 48 3

Avg. Scheduling overhead / app.(ms)

I | i | [I 4
0 250 500 750 1000 1250 1500 1750 20001
Injection Rate (Mbps)

Is acceleration always the best choice?

DSSoC should provide users with a development environment where application
programmers can design their applications in a hardware-agnostic manner

BN WiFi-TX B Pulse Doppler BN WiFi-TX M Pulse Doppler

| 1 I o N .
TURRERRE T [[1] cooo| IR I NN |

[
o
=
m
N

Processor
Processor

s BHHHLHHEER TR oo ERRER SR | =
e (AR R AR R RN coe 3 [N | N B
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (ms) Time (ms)

High latency workload, 3 CPUs and 1 FFT, oversubscribed system (injection rate 2000 Mbps), total of 2610 FFT tasks

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

Is a scheduler with the best “cumulative execution time”
performance always the best choice T?

e There is a trade-off between quality and complexity of scheduling decisions

o ETF makes good decisions
o When system is oversubscribed with high injection rate simple scheduler such as round robin
becomes desirable

- 1000 e RR
e ETF

800

m
2 g
~16.0 s
S 2 ©
] ~
s ©]
S2<155 £ 600
EL o
S 5
£ 150 S 400
22 2
<y @
0145 x
0 200
® @
o e RR S
1401 . ErF <

0 250 500 750 1000 1250 2000

Injection Rate (Mbps)

0 250 500 750 1000 1250 1750 2000 1500 1750

Injection Rate (Mbps)

1500

High latency workload, 3 CPUs and 1 FFT

COLLEGE OF ENGINEERING

A

EleC_trical'&Computer T A. Goksoy, A. Krishnakumar, S. Hassan, A. Farcas, A. Akoglu, R. Marculescu and U. Ogras, “DAS: Dynamic
Engineering Adaptive Scheduling for Energy-Efficient Heterogeneous SoCs,” Embedded Systems Letters, vol 14, no 1, pp. 51-54, 18
March 2022. https://doi.org/10.1109/LES.2021.3110426

® RR @ MET @ EFT @ ETF @ HEFTg

Portability

Verified CEDR across a number of different platforms

(sw) ddy / awiL uoiynoaxg "BAY
N
8 8.
‘ \
‘>_:§.,-

2 2 3 2000 S
GO G1 GO G1 Ve

a1
GO Gl

e Xilinx ZCU102

Hardware Configurations

e Xilinx VCU128

e HTG-960 (Xilinx VU19P)
e Nvidia Jetson AGX Xavier
e Avnet Ultra96-v2

e Various x86 systems (CPU + GPU)

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

19

Sample Gantt Charts

BN GNU Radio App BB WiFi TX SAR

72000 T 0 A
7 1 0 N RO R
§ 14 3 1 0 1 A
= €001 2.

0t 1 0 0

ssor

0 1000 15 20
Time (ms)
B GNU Radio App mEm WiFi TX SAR
mmm GNU Radio App mmEm WiFi TX SAR
&2 R 0 0 T 0 O A N
IS . il NN e
- FFt LTI R0 D A O 0 0 T N G0 5
o @ I mE NN e
8cpu3lll|ll|ll.l--llll- 0 e
& cppur2 1 0 D D N T N TR o
L T O AR AR Scpu2lITNNIENTNEENENIINENINNININ DD
coul ININNIEN NN NI NI NN N
100 200 300 400 500 600
Time (ms) 1500 1600 1700 1800 1900

Time (ms)

COLLEGE OF ENGINEERING
Electrical & Computer
Engineering

A

