nnnnnnnnnnnnnnn

Improved Messaging
using Modern PMTSs

Innovate = .. " ':Collahorate -" i Hybrids 00 0 0 00 PSP e s | - IBA ,
Create and i_nnov.ate'. ¥ " Work with our team and - Work remotely an'd'fr‘b'm .77 +25% of base CEET « +23% of base salary
without all the red tape = : . “'customerstodrive - - .. the office IR TRl S a_ut-omatigally deposited - towards benefits and
- ideas matter ; : . impactful solutions.. . - St Bl 3 e g e\ g tp-retirement’acco,unt‘ it . medical expenses -

" BlcUBED

5" i Leafn more at bcubed-corp.com., . v L <

N AN
@) ()

% sars ©
TX STATUS

Englncoving

Outline

* What is a PMT?

* Why are we doing something new?

* What are we doing?

* What have we accomplished over the past year?

* Where are we going?

Englncoving

What is a PMT?

* Polymorphic Type
* Groups arbitrary data types together.

* Think of a python dictionary or json.

* Includes serialization/deserialization functions.
* Allows us to send data over the network (distributed processing).

* Used in GNURadio for async messages and data tags.

Englncoving

Why do we want new PMTs?

* Inconsistent and hard to remember function names
* E.g. pmt::from_long() and pmt::is_integer()
* Message Validation is really hard

* E.g. Is this message a dictionary with certain keys and value types.

e Slow performance

e Difficult to do memory safe operations
* Leads to frequent segfaults.

UNCLASSIFIED

Englncoving

PMTs Maps with Modern C++

freq = 1.4e6;
bw = 125e3;
mod = "FSK";
count = 1;

pmtf::map burst({{"freq", freq}, {"bw", bw}, {"mod", mod}, {"count", count}});

pmtf::map burst2;
burst2["freq"] = freq;
burst2["bw"] = bw;
burst2["mod"] = mod;
burst2["count"] = count;

{ & [key, value]: burst) {
std::cout << key << ": " << value << std::endl;

}

UNCLASSIFIED

Englncoving

PMT Vectors with Modern C++

pmtf::vector<float> data{1.0, 2.0, 3.0, 4.0};

pmtf::vector<float> data2(4, 1.0);

& v: data?) {
v + 1.0;

::cout << (data data2) << std::endl;
::cout << (data std::vector<float>{1.0, 2.0, 3.0, 4.0}) << std::endl;

::cout << (data pmtf::pmt(4.0)) << std::endl;

Englncoving

Recent Progress

* Fixed a major performance Issue.

* \ector serialization is one of the most
common pmt operations.

* In many cases, it was much slower than the
original pmt implementation.

* Required a major rewrite of the
whole library.

* Integrated into GNURadio 4.0

UNCLASSIFIED

Uniform Vector Serialization:

pmMt
—_— pmtf

o 10000

20000

30000

40000

50000

60000

200

500 A

400 A

Time

300

200

100 H

— pmt
pmitf

UNCLASSIFIED

T T
o] 50000

T
100000

T
150000

veclen

T
200000

T
250000

Englncoving

What’s Next?

* Add data validation functionality.
e Similar to JSON Schemas

* Benchmark all major functions.
 Compare to present pmt equivalent.
* This is how we found the vector serialization issue.
* Already found a few areas for improvement.

* Ensure 100% code coverage for unit tests.
 Build on different OS’s, architectures, and with different compilers.
e Support Gnuradio 4.0 development.

UNCLASSIFIED

f B|CUBED

Englncoving

Questions??

* Repo Available at https://github.com/gnuradio/pmt

* Contact me: jsallay@bcubed-corp.com

My coworkers Joe Zeigler and Josh
Williams are also attending;
Give any of us a shout to learn more

about fun work at BCubed!

t B|CUBED

UNCLASSIFIED

https://github.com/gnuradio/pmt
mailto:jsallay@bcubed-corp.com

