
Team members:

Garrett Vanhoy, Luke Boegner, Manbir Gulati, Phil Vallance, Rob Miller, Bradley Comar, Silvija Kokalj-

Filipovic, Dresden Feitzinger, Craig Lennon

Slide 2

Overview

• TorchVision/Audio, PyTorch, Pytorch Lightning

• TorchSig Package Structure

• Modulation Classification

Adding a New Signal

• The Dataset Class

• Hands-On: Using a Dataset Class

Adding a New Transform

• The Transform Class

• Hands-On: Using a Transform Class

Models

• Pre-trained CV Models

• Custom models, loss, etc.

Agenda

Slide 4

 Mirror APIs of existing frameworks backing SoTA results (TorchVision’s Dataset and
Transform)

 If possible, do not force dependency on a particular ML framework

 Make it easy to define new datasets that could exist on disk in many formats

 Make it easy to introduce impairments/augmentations/transforms that efficiently
manipulate data before being presented to the model for training

 Provide many examples using a commonly used framework that supports multi-GPU or
other accelerator-based training

Design Methodology

Slide 5

 Datasets: RadioML, Sig53, Synthetic

 Models: EfficientNet, XCiT

 Transforms:

• General: Compose, Lambda, RandomApply, Concatenate, RandAugment

• Deep Learning Techniques: CutMix, MixUp, CutOut, PatchShuffle

• Expert Feature: InterleaveComplex, ComplexTo2D, Real/Imag, Spectrogram, Wavelet

• Signal Processing: Normalize, RandomResample

• Impairments: TimeShift, TimeCrop, FreqShift, IQImbalance, SpectralInversion, TimeReverse

• Wireless Channel: TargetSNR, AddNoise, RayleighFading, PhaseShift

 Utililities:

• Visualizers, SignalFileDataset, SignalTensorDataset

TorchSig Package Structure

Slide 6

 TorchSig Methodology

1. Define a Dataset class with __getitem__(idx: int) function that produces an example

2. Define a Transforms pipeline that impairs/augments/transforms data

3. Define a model, loss, optimizer, scheduler

4. Torch/PyTorchLightning:

1. Wrap Dataset in DataLoader with parameters: batch_size, num_workers,

2. Wrap model, loss, optimizer, scheduler in LightningModule and implement train_step, val_step

3. Run training with PL-Trainer (num_gpus, num_epochs, etc…)

Modulation Classification

Slide 8

 Inherits from torch.utils.data.Dataset

• I know, not supposed to do that, it’s probably not necessary.

• A Dataset is just a __len__ and a __getitem__ implementation (Generator)

 Possibilities in __getitem__

• Read data from a file in SigMF Format

• Read data from a file in hdf5 format

• Generate data using the idx as a seed for a random number generator

• Request data from remote database

The TorchSig Dataset

Slide 9

 We’ll use the Sig53 Classifier Example as a Starting Point

 Change Sig53 Dataset into Modulations Dataset

 Train with BPSK, QPSK: No Transforms

 Train with BPSK, QPSK: AWGN

Modulation Classification Example

Slide 10

 Modify ConstellationDataset to have a new “noise only” signal and Re-train

 Train with BPSK, QPSK, Noise: No Transforms

 Train with BPSK, QPSK, Noise: AWGN

Adding a New Signal

Slide 12

 Mirrors TorchVision Transforms

• Doesn’t inherit from it though!

• It’s just a __call__(self, data) implementation.

• Doesn’t take a batch, a good DataLoader will parallelize calls to transform pipelines/datasets.

 Possibilities in _call_

• Add an RF impairment

• Call another transform (RandAugment, Compose)

• Pass through (Identity)

 Target Transforms

• If you want to modify the label for a piece of data based on a transform, you can do that. Won’t cover.

The TorchSigTransform

Slide 13

 We’ll use the Previous Example as a Starting Point

 Train with BPSK, QPSK: New Pipeline:

• Normalize

• RandomApply

• RandomTimeShift

• AWGN

Modulation Classification Example

Slide 15

 Mirrors TorchVision Models

• Doesn’t inherit from it though!

• Many CV models can be used with num_channels=1 or 2

• Other internals change with PyTorch’s dynamic graph

The TorchSig Models

Slide 16

 We’ll use the Previous Example as a Starting Point

 Train with BPSK, QPSK: New Model

• Dense Layers 128, 64, 32, 16 with softmax output

The TorchSig Models

