Peraten LABs

TorchSig: An Open-Source Signals Processing
Machine Learning Toolkit

Team members:

Garrett Vanhoy, Luke Boegner, Manbir Gulati, Phil Vallance, Rob Miller, Bradley Comar, Silvija Kokalj-
Filipovic, Dresden Feitzinger, Craig Lennon

Agenda

Overview Models
* TorchVision/Audio, Py Torch, Pytorch Lightning * Pre-trained CV Models
+ TorchSig Package Structure « Custom models, loss, etc.

* Modulation Classification

Adding a New Signal
* The Dataset Class
+ Hands-On: Using a Dataset Class

Adding a New Transform
* The Transform Class
* Hands-On: Using a Transform Class

Siide 2 @ i%i:ggé‘gm“ﬂﬁ%inou Perat@n ‘ LABS

Peraten LABs

Overview

Design Methodology
= Mirror APIs of existing frameworks backing SoTA results (TorchVision’s Dataset and
Transform)
= If possible, do not force dependency on a particular ML framework

= Make it easy to define new datasets that could exist on disk in many formats

= Make it easy to introduce impairments/augmentations/transforms that efficiently
manipulate data before being presented to the model for training

= Provide many examples using a commonly used framework that supports multi-GPU or
other accelerator-based training

Siide 4 @ i%;g%‘.:ﬁﬁ%%.ou PeFaten ‘ LABS

TorchSig Package Structure

= Datasets: RadioML, Sig53, Synthetic

= Models: EfficientNet, XCiT

= Transforms:
+ General: Compose, Lambda, RandomApply, Concatenate, RandAugment
 Deep Learning Techniques: CutMix, MixUp, CutOut, PatchShuffle
+ Expert Feature: InterleaveComplex, ComplexTo2D, Real/Imag, Spectrogram, Wavelet
+ Signal Processing: Normalize, RandomResample
* Impairments: TimeShift, TimeCrop, FreqShift, IQImbalance, Spectrallnversion, TimeReverse
* Wireless Channel: TargetSNR, AddNoise, RayleighFading, PhaseShift
= Utililities:

* Visualizers, SignalFileDataset, SignalTensorDataset

) LABORATORY FOR
Slide 5 @ ;Elisﬁgemsmumcmou Peramn ‘ LABS

Modulation Classification
= TorchSig Methodology

|. Define a Dataset class with __getitem__ (idx: int) function that produces an example
2. Define a Transforms pipeline that impairs/augments/transforms data

3. Define a model, loss, optimizer, scheduler

4. Torch/PyTorchLightning:

I. Worap Dataset in DatalLoader with parameters: batch_size, num_workers,
2. Wrap model, loss, optimizer, scheduler in LightningModule and implement train_step, val_step

3. Run training with PL-Trainer (num_gpus, num_epochs, etc...)

LABORATORY FOR
©) g Peraten | LABS

Slide 6

Peraten LABs

Adding a New Signal

The TorchSig Dataset

= Inherits from torch.utils.data.Dataset
* | know, not supposed to do that, it’s probably not necessary.
- A Datasetisjusta __len__anda __ getitem___ implementation (Generator)

= Possibilities in ___getitem
 Read data from a file in SigMF Format
 Read data from a file in hdf5 format
 Generate data using the idx as a seed for a random number generator
* Request data from remote database

Slide 8 @

LABORATORY FOR
TELECOMMUNICATION
SCIENCES

Peraten | LABs

Modulation Classification Example
= We'll use the Sig53 Classifier Example as a Starting Point

= Change Sigb3 Dataset into Modulations Dataset
= Train with BPSK, QPSK: No Transforms

= Train with BPSK, QPSK: AWGN

Siide 9 @ i%;gﬁ“;ézﬁﬁfé%m PeFaten ‘ LABS

Adding a New Signal

= Modify ConstellationDataset to have a new “noise only” signal and Re-train
= Train with BPSK, QPSK, Noise: No Transforms

= Train with BPSK, QPSK, Noise: AWGN

Siide 10 @ i%;gg;é&.?ﬂﬁ%%.ou PeFaten ‘ LABS

Peraten LABs

Adding a New Transform

The TorchSig Transform

= Mirrors TorchVision Transforms
* Doesn’t inherit from it though!

* It’s justa __call__(self, data) implementation.
+ Doesn’t take a batch, a good DatalLoader will parallelize calls to transform pipelines/datasets.

= Possibilities in _call
* Add an RF impairment
« Call another transform (RandAugment, Compose)
* Pass through (Identity)

= Target Transforms

* If you want to modify the label for a piece of data based on a transform, you can do that.Won’t cover.

) LABORATORY FOR
Slide 12 @ ;gsﬁgrsmumcmou Peramn ‘ LABS

Modulation Classification Example

= We’ll use the Previous Example as a Starting Point

= Train with BPSK, QPSK: New Pipeline:

* Normalize

* RandomApply
+ RandomTimeShift
- AWGN

Siide 13 @ i’%;gg?éﬁ:ﬁﬁ%imu PeFaten ‘ LABS

Peraten LABs

Models

The TorchSig Models

= Mirrors TorchVision Models
* Doesn’t inherit from it though!
* Many CV models can be used with num_channels=1 or 2
+ Other internals change with PyTorch’s dynamic graph

Siide 15 @ i’%ﬁgﬁzﬁﬂ.ﬁ%ﬁnou Perat@n ‘ LABS

The TorchSig Models

= We’ll use the Previous Example as a Starting Point

= Train with BPSK, QPSK: New Model
* Dense Layers 128, 64, 32, 16 with softmax output

Siide 16 @ i%%?zﬁ.ﬁ%imu PeFaten ‘ LABS

