

Sparrow: A new broadband software radio development platform

Nima Razavi-Ghods, Jack Hickish

nima@cr-instruments.co.uk jack@realtimeradio.co.uk

Overview

- Digitization architectures for astronomy
- Common problems with the existing approach
- Advantages of digitising at the antenna
- The Sparrow project
- Current Status
- Future Fun

Low-Frequency Digitization Architectures

- Cheap, numerous, antennas
- Low bandwidth O(100 MHz)
- Little station-level (per-antenna) processing

 \rightarrow Easy to process many antennas in a single FPGA

Example: Architecture for HERA

Why this "Many antennas per board" architecture?

- Reduces size of clock distribution problem
- [supposed to be] costeffective

SNAP

ADC16

ROACH2

iTPM

Platform	Capability (# inputs \times sampling rate)	Used by	$\operatorname{Cost}/\operatorname{Channel}$
$ROACH2 + 2 \ge ADC16$	32×250 Msps or 16×500 Msps	LEDA, PAPER	\$400
SNAP	$12 \times 250 \text{ Msps} \text{ or } 6 \times 500 \text{ Msps}$	HERA	\$300
iTPM	$32 \times 1250 \text{ Msps}$	AAVS1	\$400

Common problems with this approach

- Can require a node-scenario and analog signaling (e.g. HERA)
- Can require control signaling (sensors, phase switching, GPIO etc) fed back to antennas from FPGA
- Typically lots of connection points between antenna and final output signal.
- <u>Analog artefacts such as cable reflections impact the science and</u> result in systematics that limit the sensitivity of these low frequency instruments.
- Cross-talk between adjacent channels

Why not digitise at the antenna?

- Self-generated RFI from switching electronics and clocks
- Clock distribution over long distances
- Cost effectiveness (vs many input boards)

Self-generated RFI

- Modern Silent-Switcher-2 range DC-DC converters from Analog Devices offer excellent EMI performance
- LT8648S Step-Down converter (42V, 15A)
- >95% efficiency
- Conducted and radiated EMI at extremely low levels
- Good RFI shielding practice also helps

ANALOG

LT8648S

8648S G39

Timing Distribution

White Rabbit (<u>https://white-rabbit.web.cern.ch/</u>):

- Open Source
- Capable of synchronising 1000 nodes.
- Can work over many kilometres.
- WR products readily available off-theshelf from several companies.
- Can be added to an FPGA platform for ~zero component cost

T.Włostowski, *Precise time and frequency transfer in a White Rabbit network*, 2011 https://ohwr.org/project/whiterabbit/wikis/Documents/Tom's-Master-thesis

Cost and deployment

- There are some very cheap, small FPGAs (and system-on-modules)
- Factor in extra features / cost savings:
 - Minimum signal transport costs
 - Easy antenna-control cabling
 - Lower power-dissipation / board
- Increased modularity reduces complexity

		12 ²
Z-7030	Z-7035	Z-7045
XC7Z030	XC7Z035	XC7Z045
Kintex [®] -7	Kintex-7	Kintex-7
125K	275K	350K
78,600	171,900	218,600
157,200	343,800	437,200
9.3Mb	17.6Mb	19.2Mb
(265)	(500)	(545)
400	900	900

Available (low-cost) Options

- Red Pitaya
 - Cheap (from ~\$250)
 - No high-speed output
 - No in-built timing recovery
- RFSoC 4x2
 - Less cheap (\$2150)
 - XUP only (at this price)
 - Overkill(!)

Sparrow Project

Sparrow Project

- Includes on-board White Rabbit hardware/software for timing recovery
- Includes traditional PPS and reference inputs
- Dual inputs at 12-bits, 200-400MHz BW (ADC BW of 1.2GHz) (TI ADS5407/08/09)
- 3 x 10GbE output + White Rabbit (or 4x10 / 40GbE without WR)
- Small form-factor (only 10 x 20cm) to fit in antenna
- Compatible with a range of Xilinx Zynq chips (7-Z030/35/45)
- Potential to add mezzanine cards / analogue front-end

First prototype and testing (XC7Z030 + ADS5407)

Completed Tasks:

- Simulink integration
- Linux image / tcpborphserver
- ADC interface
- Dual channel synchronization
- White rabbit locking
 - Huge thanks to Wei Liu
- 10 GbE support

File Edit View Search Terr	minal Help
WR PTP Core Sync Monitor Esc = exit	r wrpc-v4.2-dirty
TAI Time:	Thu, Jan 1, 1970, 00:39:02
Link status: wru1: Link up (RX: 121 Mode: WR Master Locked	16, TX: 570) IPv4: 10.10.10.224 (static assignment) Calibrated
PTP status: master	
Sync info not valid]	
	jackh@rtr-dev1; ~
File Edit View Search Terr	ninal Male
R PTP Core Sync Monitor sc = exit	wrpc-v4.2-dirty
AI Time:	Thu, Jan 1, 1970, 00:39:02
ink status: mu1: Link up (RX: 431 Mode: WR Slave Locked (, TX: 5598) IPv4: 10.10.10.223 (static assignment) Calibrated
TP status: slave	
ynchronization status: ervo state:	TRACK_PHASE ON
hase tracking: ux clock θ status:	endo cea
?hase tracking: aux clock θ status: f ining parameters: lound-trip time (mu): aster-slave delay:	923353 ps 463292 ps
<pre>/hase tracking: /ux clock 0 status: /ining paraneters: /ound-trip time (mu): /aster-slave delay: /aster PHY delays: /ave PHY delays: /atal link asymmetry: /able rtt delay:</pre>	923353 ps 463292 ps TX: 180750 ps, RX: 156326 ps TX: 180750 ps, RX: 159526 ps -3231 ps 246001 ps

Software pipeline

- The Sparrow SoC can host modest firmware designs but the preferred mode is one which relies on outputting synchronised ADC packets with little or no processing on the board.
- This has many advantages for astronomy F engine, FX, FXF design which can be computed on COTS server(s) and FPGA/GPU racks using widely available code.
- Writing software to turn ADC packets into e.g. a 64K channel spectrum is significantly easier and less prone to error than doing it in FPGA firmware.
- The aim is to develop Sparrow with compatible backends like GNU Radio which reduce significantly the time it takes for users to get up and running.

The short-term roadmap

- Enhance the Sparrow hardware design to enable full transceiver functionality. Our approach is to decouple TX/RX functions by not limiting our design to a particular transceiver chipset.
- Provide frequency extension from the current baseband (DC-1.2GHz) to much greater frequencies (initially up to 8GHz).
- Fine-tune the firmware needed to interface with the hardware and download data from the platform.
- Develop the primary software tools to help interface with a GNU Radio backend.

Open Source reference designs

- Our aim is to make a lot of the design files for Sparrow open-source specially daughterboards and mezzanine cards (KiCAD-6)
- Daughterboards (RF + Clocks)
 - 8GHz downconverter/downconverter
 - IQ data
- Mezzanine cards (high-speed GPIO + Clocks)
 - DAQ functionality

What Next?

- Working with Xilinx on cost minimization
- Ready to assemble rev 2
 - Minor hardware fixes
 - High bit error rate on 1 out of 4 10G interfaces
 - EOL part substitutions
- Looking for people who want to play with a board!

What Next?

Hawk?

- Zynq US+ / KU4/5P / ZU11
- 100GbE output
- AD9207 (dual chan x 6Gs/s)
- White Rabbit

