
• Garrett Vanhoy, PhD (Peraton Labs)

Team members: 
Josh Morman, Troy Bates, Rob Taylor (Peraton Labs) 
Ray Hoare, PhD, Claire Brevik (Concurrent EDA)

• Work done thanks to:
DARPA TRIAD Program

Tensors for Reprogrammable Intelligent Array Demonstrations



2

• Inference as DSP?

• Architecture

• Benchmarks/Results

• OOT Structure

Agenda



3

Inference as DSP?



4

• GNU Radio has a library of blocks implementing DSP on CPU, but 
what about other modern processors GPU, FPGA, etc?

• Ideally, as SDR application developers, we would like to have as 
much control about where and how DSP operations are run.

Why Inference as DSP?



5

• Implementing many basic DSP operations on GPU are available
• cuSignal, Eigen, PyTorch/Tensorflow, MatX, OpenCV, OpenCL, Intel oneAPI

• Libraries supporting FPGA-based DSP implementations:
• Vitis Libraries, Ettus RFNoC, hls4ml

• Some questions:
• What about when multiple devices are available?
• How do you efficiently handle transfers between devices?
• What is an appropriate model for the maintenance of a heterogeneous 

DSP library?

Why is that hard?



6

• Leverage Tensor-processing libraries such as PyTorch and 
Tensorflow to describe DSP operations
• And also implement actual ML models too.

• Integrate GRC/GR with inference servers to leverage multiple 
devices and per-operation/block scheduling

• The result: write a “model” in Python, implement it on:
• Multi-core CPU
• GPU/Multi-GPU
• FPGA/Multi-FPGA (DPU)

What’s our approach?



7

Overall

Architecture



8

Front End

Ap
pl

ic
at

io
n

So
ftw

ar
e 

an
d 

H
ar

dw
ar

e

Use GRC as a familiar 
front-end to develop 

blocks.



9

Generic GR “Model” block

Ap
pl

ic
at

io
n

So
ftw

ar
e 

an
d 

H
ar

dw
ar

e

GR blocks just call to the 
inference servers



10

Generic GR “Model” block

Ap
pl

ic
at

io
n

So
ftw

ar
e 

an
d 

H
ar

dw
ar

e

Each call is a batch of 
data



11

Triton Inference Server:
Running multi-core CPU, GPU, and multi-GPU

Architecture



12

TIS Internals

Here’s TIS’s overall 
architecture



13

TIS Internals

Models are defined 
through a number of 
common frameworks



14

TIS Internals

Client libraries are 
provided to issue 

Inference Requests



15

TIS Internals

There is a supported 
way to make direct calls 
to inference rather than 
remote calls, to be more 

efficient



16

TIS Internals

Each “model” has 
inference requests has a 

scheduler.

The scheduler can be 
configured.



17

TIS Internals

Models are instantiated 
across a configurable 
number of devices.



18

TIS Integration

Ap
pl

ic
at

io
n

So
ftw

ar
e 

an
d 

H
ar

dw
ar

e

Each block is defined in Python as a Pytorch
Module.



19

AMD/Xilinx Inference Server and the Deep-Learning Processing Unit (DPU)

Architecture



20

• AMD/Xilinx offers a Deep Learning Processor Unit (DPU) 
implemented in Programmable Logic
• Effectively works as co-processor specialized for convolutional neural networks

• Supported on:
• Zynq-7000 SoC and Zynq Ultrascale+ MPSoC

• DPU’s are a customizable IP Block
• AMD/Xilinx provides baseline images with DPU access
• Can have up to four DPU’s with different configurations

What is the DPU?



21

• Rapid Development/Prototyping
• Place-and-route not required when to implement a new “model”

• Parallelism
• Highly parallelized architecture for convolutions can be exploited for 

efficient DSP/ML

• Simplified Development Interface
• Python à FPGA implementation

What’s Special about the DPU?



22

• Similar to CPU/GPU, a 
model is defined in 
PyTorch

• Vitis AI Tools creates 
xmodel files to run on DPU

• Vitis-AI Runtime (VART) 
provides Python interfaces 
to actuate DPU’s with 
provided data

Working with the DPU

DPU Implementation



23

• DPU employs three 
independent means of 
parallelism

• 2D convolutions can be 
used to implement many 
common DSP operations
• And also ML layers

Working with the DPU

DPU Implementation



24

• Fixed point vs Floating point

• Most of the current DPU configurations process 8-bit data, not 16-bit

Some Caveats

DPU Implementation



25

Triton Inference Server on CPU/GPU/multi-GPU

Throughput Measurements



26

• Purpose
• Expected maximum throughput if transfer overhead (double-copies, 

HTTP RTT) is eliminated

• Using perf_analyzer provided by TIS
• Configurable: # threads, batch size
• Fixed: transfer via shared memory, HTTP

• Hardware
• Four (4) nVidia 4500 (20 GB)
• AMD EPYC 7513 with 32 Cores

TIS Throughput Measurements



27

• GPU and CPU perform similar for smaller FFT
• Too large FFT and batch size result in overhead from TIS

TIS Throughput: FFT



28

• GPU and CPU still perform 
similarly for smaller 
convolutions

• Multi-GPU is closer to linear in 
speed-up per GPU

TIS Throughput: Convolve



29

• GPU outpaces CPU for larger 
batch sizes

• Multi-GPU outpaces single 
GPU for yet larger batch sizes

TIS Throughput: Dot Product



30

The DPU (and eventually the AMD/Xilinx Server)

Throughput Measurements



31

• Purpose
• Expected maximum throughput if transfer overhead (double-copies, 

HTTP RTT) is eliminated

• Hardware
• KRIA KV260
• Single DPUCZDX8G in B4096 configuration running at 300 MHz

• Using a simple Python program on the ARM processor
• AMD/Xilinx server to be eventually benchmarked

DPU Benchmarks



32

• Using a 2D convolution operation to represent an 8-element 
complex dot-product in 8-bit fixed-point format.
• We “batch” in the input-channel, height, and width dimensions
• Effective “batch” size is 32768

• This can represent an 8-element narrowband beamform:
• ~60 MS/s throughput per-aperture

DPU Throughput: Dot Product



33

• Using a 2D convolution operation to represent a 
• 1024-tap real filter operating on real data
• 8-bit fixed-point format
• decimating by a factor of 64

• We “batch” in the input-channel, height, and width dimensions
• Effective “batch” size is 4096

• Measured throughput: ~31 MS/s

DPU Throughput: Real-Only Filter



34

• Using a 2D convolution operation to represent a
• 256-element complex FFT
• 8-bit fixed-point format

• We “batch” in the height and width dimensions
• Effective ”batch” is 256

• Measured throughput: ~300 MS/s

DPU Throughput: FFT



35

GPU/DPU Benchmarks for ML



36

OOT Structure



37

1. examples
1. Beamforming flowgraph
2. FFT flowgraph
3. ML flowgraph

2. Models
• Triton

• models

• dpu
• models
• architecture

3. Available blocks
• FIR Filter
• FFT
• Beamform

OOT Structure



38

• Available at https://github.com/gvanhoy/gr-torchdsp

Information on OOT


