Passive reception of Two-Way Satellite Time and Frequency Transfer (TWSTFT) signals from a geostationary satellite, or GPS upside down

J.-M Friedt, G. Goavec-Merou

FEMTO-ST, Time & Frequency department, Besançon, France slides at http://jmfriedt.free.fr/grcon2022.pdf

26-30 September 2022

to the time

Time v.s. frequency

- clock on both ends are not running at the same rate
- clock on both ends are not phase synchronized (time delay)
- ► the only known timestamp is when sampling the incoming signal by the ADC ⇒ the ADC clock must be referenced to the disciplined/reference oscillator
- Timetech's SATRE (Satellite Time- and Ranging Equipment ^a) uses communication layers (OSI layer >0) for sharing timestamps

^ahttps://www.ion.org/ptti/upload/files/1039_ 10139_Datasheet.pdf

Frequency offset correction needed for correlation: postprocessing in SDR approach

Time v.s. frequency

- clock on both ends are not running at the same rate
- clock on both ends are not phase synchronized (time delay)
- ► the only known timestamp is when sampling the incoming signal by the ADC ⇒ the ADC clock must be referenced to the disciplined/reference oscillator
- Timetech's SATRE (Satellite Time- and Ranging Equipment ^a) uses communication layers (OSI layer >0) for sharing timestamps

$$FT(xcorr(x, y)(\tau)) = FT(x) \cdot FT^*(y)$$
$$\Rightarrow FT(xcorr(x, x)) = |FT(x)|^2$$

Frequency offset correction needed for correlation: postprocessing in SDR approach

^ahttps://www.ion.org/ptti/upload/files/1039_ 10139_Datasheet.pdf

Two-way time transfer

Temps Atomique International¹ results from averaging multiple (500 in 2016) atomic clocks (primary references²) over the world (>70 laboratories)

- Speed of light: 300 m/ μ s
- ▶ MIFID II/high frequency trading³: financial transactions must be timestamped to better than 100 μ s accuracy, 1 μ s resolution
- ▶ 5G: \leq 260 ns
- ▶ smart grid: \leq 100 ns (<10 m fault detection) ⁴

Need for time of flight compensation \Rightarrow TWSTFT Question: are these signals usable for one-way T&F dissemination?

¹https://www.bipm.org/en/time-metrology

²https://www.lne.fr/en/learn-more/international-system-units/second: the definition of the second is the duration of 9,192,631,770 transitions between two hyperfine levels of the ground state of the cesium-133 atom

⁴European Global Navigation Satellite System Agency, *Report on Time & Synchronization User Needs and Requirements GSA-MKD-TS-UREQ-250285* (2018)

⁴https://wsts.atis.org/wp-content/uploads/sites/9/2018/12/P-07_Nguyen_NIST_ Timing-Challenges-in-Smart-Grid.pdf

Receiving TWSTFT with a consumer television satellite parabolic antenna

Reception conditions available from public information:

- 10 96015 GHz
- Communication every even UTC hour ^d
- Each communicating station is frequency offset^e

^aC. Rieck, P. Jarlemark & K. Jaldehag, Utilizing TWSTFT in a Passive Configuration, Proc. 48th Annual Precise Time and Time Interval Systems and Applications Meeting (2017)

^bC. Rieck, P. Jarlemark & K. Jaldehag, *Passive Utilization of* the TWSTFT Technique, Proc EFTF (2018)

^cCCTF/17-20. RISE Research Institutes of Sweden. Report on Activities to the 21th meeting of the Consultative Committee for Time and Frequency, June 2017 section 7.2. Passive Utilization of TWSTET

^dV. Zhang & al., A Study on Using SDR Receivers for the Europe-Europe and Transatlantic TWSTFT Links, Proc. 2017 Precise Time and Time Interval Meeting (2017)

^eA. Kanj, Étude et développement de la méthode TWSTFT phase pour des comparaisons hautes performances d'étalons primaires de fréquence, thèse Univ. Pierre & Marie Curie (2012), p.53

Objectives: receiving TWSTFT signals @ 11 GHz from Telstar11N (37.5° W geostationnary) downlink

- European downlink frequency from Telstar11N^{a b c} :
 Time & frequency synchronization signals broadcast every even UTC hour from metrology laboratories
 - BPSK signal received allowing for frequency correction ...
 - ... and SATRE modem codes correlated with consistent frequency offset

Receiving TWSTFT with a consumer television satellite parabolic antenna

Experimental setup: completement 2.4 m parabola with COTS TV receiving equipment and B210 SDR receiver

- ► TV-satellite reception LNB oscillator at 9.75 GHz ...
- ... brings TWSTFT signal at 1.21 GHz within SDR receiver range, recorded at 10 MS/s (complex IQ)

Objectives: receiving TWSTFT signals @ 11 GHz from Telstar11N (37.5 $^\circ$ W geostationnary) downlink

- Time & frequency synchronization signals broadcast every even UTC hour from metrology laboratories
 - BPSK signal received allowing for frequency correction ...
 - ... and SATRE modem codes correlated with consistent frequency offset

Time and frequency transfer

Telstar11N located 37.5°W views both North-America and Western Europe (at grazing angle!)

Time and frequency transfer

Telstar11N located 37.5°W views both North-America and Western Europe (at grazing angle!)

3D view courtesy of celestrak.org: despite 36000 km altitude, a geostationary satellite can hardly view above 75° (communication) or 60° (weather imaging)

Low Noise Block (LNB)

- amplification + frequency transposition to intermediate frequency
- supply voltage through a bias-T: 13 or 18 V selects polarization (H vs V)
- frequency transposition: local oscillator is 9.75 GHz (can jump to 10.60 GHz when injecting a 22 kHz tone through the bias-T)
- ▶ feed Ettus Research B210 receiver with IF (1.204 GHz) signal
- RTL-SDR lacks bandwidth (5 MHz needed) but also demonstated with RSP1 SDRPlay clone
- datastream: 5 MS/s×2 bytes/sample×2 samples/complex= 20 MB/s=1.2 GB/min

Receiving TWSTFT signals in the USA

*	twop59.584	ŧ.		
*	FORMAT	01		
*	LAB	0P https://webtai.bip	m.org/ftp/pub/tai/data/2022/time_transfer/twstft//op/	
*	REV DATE	2021-08-24		
*	ES 0P01	LA: N 48 50 09.236	LO: E 02 20 05.873 HT: 78.00 m	In
*	REF - FRAME	ITRF88		••••
*	LINK 23	SAT: TELSTAR 11N	NLO: E 322 27 00.000 XPNDR: 999999999 ns	wl
*		SAT-NTX: 10953.9500 MHz	SAT-NRX: 14253.9500 MHz BW: 4.1 MHz	
*	LINK 21	SAT: TELSTAR 11N	NLO: E 322 27 00.000 XPNDR: 999999999 ns	to
*		SAT-NTX: 11497.0600 MHz	SAT-NRX: 14047.7400 MHz BW: 3.9 MHz	ь.:
*	CAL 095	TYPE: PORT ES REL	MJD: 53684 EST. UNCERT.: 1.100 ns	DI
*	TWNIST59.5	584		20
*	FORMAT	01		20
*	LAB	NIST https://webtai.bip	m.org/ftp/pub/tai/data/2022/time_transfer/twstft//nist/	
*	REV DATE	2021-07-07		
*	ES NIST01	LA: N 39 59 45.000	LO: W 105 15 46.000 HT: +1640.00 m	
*	REF - FRAME	WGS84	NU 0. E 222 20 00 000 VENER 00000000	
÷	LINK 13	SAT: TELSTAR IIN	NLU: E 322 30 00.000 XPNDR: 999999999 ns	
*		SAT-NIX: 11720.5500 MHZ	SAT-NKA: 14285.550 MHZ BW: 2.5MHZ	
*	LINK 15	SAT: TELSTAR IIN SAT NTY, 11746 5000 MU7	NLU: E 522 50 00.000 APNDR: 999999999 115	
*	LTNK 16	SAT- NTA. 11740.5900 MHZ	NI O · E 322 30 00 000 YDNDD · 00000000 pc	
*	LINK IU	SAT-NTX: 11746 5900 MHz	SAT-NRX: 14289 060 MHz RW: 1 6MHz	_
*	I TNK 20	SAT: TELSTAR 11N	NLO: E 322 27 00.000 XPNDR: 999999999 ns	D
*	211111 20	SAT-NTX: 11747.7400 MHz	SAT-NRX: 14297.060 MHz BW: 3.9 MHz	1 1
*	CAL 071	TYPE: Cir.T(NPL1)	MJD: 53152 EST. UNCERT.: 5.000 ns	11
*	twusno59.5	583		tr
*	FORMAT	01		LIG
*	LAB	USNO https://webtai.bipm	.org/ftp/pub/tai/data/2022/time_transfer/twstft//usno/	na
*	REV DATE	2021-05-27		
*	ES USNO01	LA: N 38 55 14.000	LO: W 77 04 00.100 HT: 46.90 m	L
*	REF - FRAME	WGS84		
*	LINK 20	SAT: TELSTAR 11N	NLO: E 322 30 00.000 XPNDR: 999999999 ns	
*		SAT-NTX: 11747.7400 MHz	SAT-NRX: 14297.0600 MHz BW: 3.9 MHz	
*	CAL 458	TYPE: TRIANGLE CLOSURE	MID: 59032 EST. UNCERT.: 3.000 ns	

Invaluable resource: BIPM ftp server where data shared between observatories are stored: https://webtai. bipm.org/ftp/pub/tai/data/ 2022/time_transfer/twstft/

- ▶ Europe: 10.95395 GHz
- NIST (Boulder, Colorado)
- USNO (Washington DC)
- Dowlink frequency: 11.49706 & 11.74774 GHz $\Rightarrow \simeq 1.7-2$ GHz after transposition **or** inject a 22 kHz signal through the LNB bias T to switch LO to 10.6 GHz $\Rightarrow \simeq 1$ GHz

Antenna geometry

If a television reception antenna is enough to receive the signal, why a 2.4 m parabolic reflector?

- Antenna gain (2.4 \rightarrow 0.6 m parabola: 49 to 37 dB gain) ►
- Antenna directivity ^a

Your location e.g. street, (lat, lon)		All Satellites Motorized Systems I	vlulti-LNB Setups
47.2455, 6.0209	Searchi	37.5W NSS-10 (AMC-12) TELST/	AR 11N
		\$\$\$\$ <i>611</i>	
A Starter	155: 47.2455, 6.0209 de: 47.2510° htde: 5.9031°	*	
1 - 1 -	Be: 37.5W NB5-10 (At dot: 21.4* .th (true): 232.3* .th (magn.): 220.7*	IC-12) TELSTAR 11N	- Aller
	an dick and drag the r	ar har	
			AL X

^aEutelsat, Antenna and VSAT Type Approval/Characterization, ESOG 120 - Issue 8 - Rev. 1 (May 2021)

H nttps://www.n2yo.com/satell	nttps://www.n2yo.com/satellites/?c=10&srt=11&dir=1 CIIS			shpointer.com		
INTELSAT 14	36097	2009-064A	November 23, 2009	1436.1	45° W	
USA 7	15453	1984-129A	December 22, 1984	1456.6	44.4° W	
INTELSAT 32E (SKY BRASIL 1)	41945	2017-007B	February 14, 2017	1436.1	43.2° W	
INTELSAT 11 (PAS 11)	32253	2007-044B	October 5, 2007	1436.1	42.9° W	
SESAT 2 (EXPRESS AM-22)	28134	2003-060A	December 28, 2003	1449.3	42.9° W	
USA 170	27875	2003-040A	August 29, 2003	1436.1	42.3° W	
EUTELSAT 2-F2	21056	1991-003B	January 15, 1991	1455.4	42.2° W	
KALPANA 1 (METSAT 1)	27525	2002-043A	September 12, 2002	1464.3	42.1° W	
EXPRESS AM-11	28234	2004-015A	April 26, 2004	1451.1	41.5° W	
TDRS-12	39504	2014-004A	January 23, 2014	1436	40.9° W	
SES-6	39172	2013-026A	June 3, 2013	1436.1	40.5° W	
ARABSAT 1D (ANIK D2)	15383	1984-113B	November 8, 1984	1455.9	39.3° W	
USA 252	39751	2014-027A	May 22, 2014	1436.1	38° W	
TELSTAR 11N	34111	2009-009A	February 26, 2009	1436.1	37.6° W	
NSS 10 (AMC-12)	28526	2005-003A	February 3, 2005	1436.1	37.5° W	
EUTE 36A (EUTE W4)	26369	2000-028A	<u>May 24, 2000</u>	1462.4	36.7° W	
GARUDA 1	26089	2000-011A	February 12, 2000	1441.2	36.7° W	
ITALSAT 2	24208	1996-044A	August 8, 1996	1428.9	36.6° W	
HISPASAT 36W-1	41942	2017-006A	January 28, 2017	1436.1	36° W	
MARECS B2	15386	1984-114B	November 10, 1984	1501.1	35.6° W	
THAICOM 1	22931	1993-078B	December 18, 1993	1451.8	35.2° W	
INTELSAT 605	21653	1991-055A	August 14. 1991	1449.7	34.5° W	
INTELSAT 35E	42818	2017-041A	July 5, 2017	1436.1	34.5° W	
AURORA 2	21392	1991-037A	<u>May 29, 1991</u>	1454.3	34.4° W	
OPS 6391 (FLTSATCOM 1)	10669	1978-016A	February 9, 1978	1454.5	34.2° W	
SPACENET 3P	18951	1988-0184	March 11, 1988	1444.8	34.1° W	

.. .

49

Carrier frequency offset⁵

Europe	TX Offset (kHz)		TX Offset (kHz)
OP01	-8.944	OCA01	26.833
NPL01	0.000	IT02	-26.833
VSL01	8.944	ROA01	-44.721
SP01	-17.889	CH01	4.472
PTB01	17.889	TIM01	-13.416

 Frequency fluctuation of 2-day measurements (satellite transponder, LNB & SDR receiver)

 Identify carrier by squaring BPSK modulation & attribute lowest frequency offset to the known observatory

⁵A. Kanj, Étude et développement de la méthode TWSTFT phase pour des comparaisons hautes performances d'étalons, PhD SYRTE/UPMC (2012)

Time and frequency transfer over geostationnary satellite links

SATRE modem, sequel to MITREX modem (1980s) developed in Stuttgart, proprietary hardware manufactured and sold by Timetech (Germany)

No (publicly) available documentation on the link characteristics ⁶ but

These constraints have been met by the MITREX MODEM. It is an interface between the 70-MHz IF of a standard earth station, a Time Interval Counter TIC and the time keeping hardware, i.e. the atomic clock. The hardware is housed in a 19-inch drawer and operates as a pseudorandom noise sequence (PN) encoder/decoder of the time signal. The PN-code is a truncated maximum length sequence of period 10,000, instead of the 16.383 chips. This period of 10.000 eases the overall system design, as it allows the use of even and decimal dividers for signal processing. The correlation features of the maximum length sequence are almost retained.

2.2 PN-Encoding/Decoding

- ▶ 16383 = 2¹⁴ − 1 and there are "only" ^a 756 possible maximum length sequence generators
- truncation to 10000-long, but we do not know what is the starting point
- Bit rate of 2.5 Mb/s: code repeats every 4 ms (10 ms @ 1 Mb/s)
- All 0s is a forbidden state (XOR(0,0)=0) so we might start with all 1s
- Calculate all possible codes, interpolate to match sampling rate, store their Fourier transform ...
- ... and for all possible frequency offset identified by squaring the signal (cancelling BPSK modulation), matrix product of FFT(signal) with stored FFT of codes
- iFFT will display correlation peaks if patterns match.

⁶P. Hartl, Present state of long distance time transfer via satellites with application of the Mitrex modem (1986) ^{13/49}

^ahttps://users.ece.cmu.edu/~koopman/lfsr/

For all possible frequenycy offsets, run all possible LFSR codes (indexed on the abscissa)

SATRE code reverse engineering

All 0s is forbidden state \Rightarrow start with all 1s

C (Galois LFSR)

```
#define L 16383 // 10000
for (i=0; i<1; i++) reg[i]=1; // 0x3FFF
for (i=0; i<1; i++)
    {code[i]=reg[0];
        for (j=1; j<14; j++)
            if (tap[prno][j]==1)
                shift_back'=reg[]];
        for (j=1; j<14; j++)
                reg[j=1]=reg[j];
        reg[13]=shift_back;
    }
}</pre>
```

```
Octave/Matlab (Fibonacci LFSR)
```

```
start=0x3fff;
!fsr=uint16(start); % starting value.
i=1;
do
y(i)=bitand(lfsr, uint16(1)):%save lsb
if bitand(lfsr, uint16(1))
Ifsr=bitxor(bitshift(lfsr,-1), uint16(feedback));
else
Ifsr=bitshift(lfsr,-1);
end
i=i+1;
until (lfsr=start); % max length LFSR must be 16383
```


The Matlab code generates the right sequence but *not* starting with the same sequence than the C program

 \Rightarrow time offset but still at least 60% overlap despite truncation of the 14-bit sequence to 10000 chips

Processing sequence

- 1. coarse frequency offset by squaring the signal to get rid of BPSK: carrier offset at $2\delta\omega$
- 2. compensate for frequency offset by multiplying with $\exp(j\delta\omega t)$ with $t = [0: N-1]/f_s$ (GNU Radio Costas Loop with order=2)
- 3. correlation with known pseudo random pattern interpolated by sampling rate/chip rate (=2 if $f_s = 5 \text{ MHz}$)
- linear fit of phase evolution and fine frequency offset correction (xcorr(x, y ⋅ exp(jφ)) = exp(jφ) ⋅ xcorr(x, y))
- 5. atan(Q/I) provides π -rotation insensitive phase evolution (timestamp every 10000 chips @ 2.5 Mchips/s i.e. 1st notch of FET

once every 4 ms)

6. Process full 3 minute (3.6 GB file fitting in a 4-GB RAM Raspberry Pi4 ramdisk) recorded at 5 MS/s as 20000 sample-sequences making sure a single correlation peak is found at each iteration

1-PPS delay comparison

- coarse frequency offset from squaring the signal
- fine frequency offset from phase linear fit
- frequency must "only" be compensated for well enough to avoid wasting signal to noise ratio, but no metrological meaning
- second order polynomial fit of the correlation peak for sub-sampling period (<
 200 ns at 5 MS/s) resolution identification of correlation peak position
- 200 ns jumps of the correlation peak at beginning of each second

1-PPS mark in BPSK stream

Time-domain interpretation: ± 200 ns (Merck, 2019 & Mitrex 2500A, 1989)

La fréquence d'hortope du registre à décalage étant de 2,5 MHz (voir les considérations précédentes), chaque chip dure 400 ns d'où une séquence binaire de durée 4 ms, reproduite 250 fois par seconde comme indiqué sur la figure A17. On remarque sur cette figure que la premier chip de chaque seconde est décalé de plus ou moins 200 ns. Ce décalage dans le temps a pour objectif de différencier chaque seconde (ráce à la désection de cet urique chip de durée raiforque ou nacement de 200 ns).

K. Imamura & F. Takahashi, Frequency and Time Comparison – Two-way time transfer via a geostationary satellite, J. of the Communication Research Laboratory **39**(1), 91–100 (1992) Frequency-domain interpretation: $\pm 90^{\circ}$ (Hartl, 1986)

What we see (SATRE TX monitor) ...

2.2 PN-Encoding/Decoding

As shown in fig. 1, MODEM 1 (2) is fed by the 5MHz (or 10MHz if desired) standard frequency of the cesium clock cll (cl2). The frequency is divided by a factor of two (or four) and used as the PN-clock (the description is true for MITREX 2500, the newer version. In the original MITREX, the clock rate was 2 MHz. and therefore a division of 2.5 or was necessary). This is 5 resp. also called the chiprate. In addition, the 1 pps time tick of cll (2) is used for the generation of the 1 sec period phase modulation of the PN-code. The PN-signal consists of "bits" of 10,000 chips and length of 4 msec. 249 such bits are sent hefore the bit 250 is to indicate the occurance of the 1 pps pulse. The indication is done by delaying the first 5000 chips of this bit 90 degrees and advancing the next 5000 chips by 90 degrees.

(2) Transmission of 1PPS signal

The signal transmitted via a geostationary satellite has a delay of several hundred milliseconds. Because this delay is greater than the code length, the 4-ms ambiguities occur at the receiving site. To identify the accurate code for selection, the modulation of one of the 250 codes is synchronized with the in-house 1PPS signal. The method of the modulation is 1-chip delay of the M-sequence.

Correlation peak delay fluctuation for the various received signals (8 observatories recorded by SDR)

BPSK digital signal detection

- Similar to GPS CDMA: XOR bits with code unique to each transmitter ⇒ after correlating with known code, recover messages
- Phase varies due to the various uncontrolled oscillators
- 2φ = 0[2π] so unwrap(2φ)/2 provides phase drift
- $\Phi = \varphi unwrap(\underbrace{2\varphi}_{0[2\pi]})/2$ for BPSK digital communication detection provides $+/-1 \in \mathbb{R}$ output
- sign(Φ) is the two possible bit states
- message repetition: autocorrelation every 250 (=1/4 ms) cross-correlation sample=1 s

SATRE time dissemination code

SATRE time dissemination code

Carrier recovered by unwrapping $2d\varphi \in [0:2\pi] = 0[2\pi]$ and exctract $arg(\varphi - d\varphi))$

identify convolutional forward error correction mechanism.

fast time (sample) The content and coding scheme of the digital commu-

150

100

50

200

250

^aM. Marazin, R. Gautier, G. Burel, *Dual Code Method* nication layer ^a are not documented for *Blind Identification of Convolutional Encoder for*

Cognitive Radio Receiver Design, Proc IEEE GLOBECOM Workshops (2009)

^aB. Seeber, *SDR Tips and Tricks*, DEFCON 24 Wireless Village (2016), at 17:40 of https://www.youtube.com/watch?v=yZ5GOnYSM98

Why TWSTFT?

Time transfe	r requirer	nents	:			- from Ll	NB —	$ \rightarrow B210$	SDR →	timestamped [►] datastream
MiFID II fin	nancial tr	ansac	tions 1	00 μ s			Ş	icco	IVCI	
GPS C/A			1	00 ns			+13	V		
GPS phase				1ª ns	self.co	onnect ((self	f.blocks_he	ad_0, 0), (se	lf.blocks_fil	e_sink_0, 0))
TAI .			<	<1 ns	# add	external 1—1	PPS trigger	:	time last ar	()
					self.u	hd_usrp_sou	rce_0.set_t	ime_next_pps(uhd.time_sp	$ec_t(0.5) + \rightarrow$
²1 ns=30_cr	n in air				time.sl	\hookrightarrow curr_hw_t eep(0.1) #	must be <<	1 s		
ns					self.u	hd_usrp_sou ∽curr_hw_t	rce_0.set_s ime)	tart_time (uhd	.time_spec_t	$(1.01) + \rightarrow$
s (100000		· · · .		. 🚧	. 🖌			¥	
d o				×.	××	××	2		××	
e	50000	L	×	×	××	- 🕺 🙀	¥	💥 🎽	ا_ 🕺 ک	
Jot	50000	IISN	*	×	× ×			× ^	×.	
en			<u>^</u>		* *	* ?	*	^ ¥	×	
	0	- 6	≫	× >	< 🔆 🔆	~	× 🖉		× -	
Ś.			XX	~ ~ ~	۲ ×	*	**	X	×	
4 4	-50000	⊢ ∤	~~	Ŷ	3	۲ (×	× .	4	
cal	4	60	480	500	520	540	56	0 580) 600	C
<u>0</u>				r	neasurer	nent tim	ne (h)			2

GPS receiver \longrightarrow 1PPS

GPIO

Challenge of one-way reception: multiple antennas

A geostationnary satellite is not fixed in space but subject to gravitational forces (Moon, Sun) \Rightarrow need to recover satellite attitude

- A geostationnary satellite moves in a sphere 30-km radius around its expected location
- 30 km=100 μs: can we detect and compensate for satellite motion using multiple antennas?
- ▶ 30 km at 39000 km means angle of arrival variation of $d\vartheta = 7.7 \cdot 10^{-4}$ rad
- $\varphi = \vec{k}\vec{r} = \frac{2\pi}{\lambda} \cdot D \cdot \cos(\vartheta) \Rightarrow d\varphi = \frac{2\pi}{\lambda} \cdot D \cdot \sin(d\vartheta) \simeq \frac{2\pi}{\lambda} \cdot D \cdot (d\vartheta)$: if *D* distance between antennas is 3 m, then $\varphi = 0.26$ rad at 5.5 cm wavelength or 185 ps period \rightarrow delay variation of 8 ps

Impossible with an array of local parabolic antenna: time delay measurement accuracy in the 100 ps range

But what if D=1500 km? Then the delay variation becomes 3.9 μ s !

Challenge of one-way reception: single antenna observations

 Use spatial diversity of signal sources: observatories disseminated all over Europe

- For each pair of observatories (different illumination angles) measure difference of 1-PPS time of arrival
- ► Each observatory emits during different timeslots (SATRE can only acquire a single pair) when SDR analyzes the signal from all emitters ⇒ interpolate
- Single antenna reception compares nicely with BIPM dataset ^a

$$observation = rac{1}{2} (ranging_1 - ranging_2)$$

^aData shared between observatories: https://webtai.bipm.org/ftp/pub/tai/data/ 2022/time_transfer/twstft/

Problem of absolute ranging

Good fluctuation agreement after interpolation (SATRE) but mean value mismatch (x2)

Problem: short pulse repetition interval of SATRE (4 ms) makes the measurement ambiguous: \longrightarrow

Observatory	lat (deg)	lon (deg)	angle (deg)	delay (ms)
OP	48.84	2.34	59.645	262.23
LTFB	47.25	5.99	60.497	262.82
Greenwich	51.48	0	60.390	262.74
INRIM	45.02	7.64	60.092	262.54
PTB	52.3	10.46	65.826	266.56
SW Spain	36	-9	44.685	252.70
NW Finland	68	42	86.086	281.41

OP ranging 0.262324478570 s ROA ranging 0.258119759893 s Difference 4.2 ms> 4 ms

 $\frac{1}{2}$ (Paris – Cadiz)=2.1024 ms[2ms] = 102.4 μ s

Challenge of one-way reception: single antenna simulations

- single antenna measurement cannot compensate for tropospheric and ionospheric delay from satellite to receiver
- satellite motion can be deduced knowing the observatory location and satellite latitude
- ► more observations (≥ 6 observatories) than variables (3) ⇒ 2 least square solution with residual
- ▶ position fluctuation around equilibrium only requires projecting satellite motion vector on satellite-observatory vector →
- impact of satellite motion on time of flight difference reduced due to nearly identical identical line of sight from Western Europe to Telstar11N

Objective:

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ 86.641 ns OP-IT @ 343.285 ns OP-ROA @ -485.357 ns

$$arepsilon = \sum_i (d_i/c - t_i)^2$$

Objective:

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ 86.641 ns OP-IT @ 343.285 ns OP-ROA @ -485.357 ns [№] OP-NPL @ -224.806 ns OP-VSL @ -59.948 ns ⁻¹⁰ OP-PTB @ 244.319 ns

$$arepsilon = \sum_i (d_i/c - t_i)^2$$

Objective:

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ -70.534 ns OP-IT @ 548.516 ns OP-ROA @ -184.947 ns [№] OP-NPL @ -335.514 ns OP-VSL @ -198.028 ns ⁻¹ OP-PTB @ 244.825 ns

$$arepsilon = \sum_i (d_i/c - t_i)^2$$

Objective:

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ -263.626 ns OP-IT @ 704.868 ns OP-ROA @ 197.608 ns [№] OP-NPL @ -445.955 ns OP-VSL @ -151.232 ns [−] OP-PTB @ 175.705 ns

$$arepsilon = \sum_i (d_i/c - t_i)^2$$

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ . ns OP-IT @ . ns OP-ROA @ . ns OP-NPL @ . ns OP-VSL @ . ns OP-PTB @ . ns

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

$$arepsilon = \sum_i (d_i/c - t_i)^2$$

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

$$arepsilon = \sum_i (d_i/c - t_i)^2$$

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

$$arepsilon = \sum_i (d_i/c - t_i)^2$$

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ . ns OP-IT @ . ns OP-ROA @ . ns OP-NPL @ . ns OP-VSL @ . ns OP-PTB @ . ns

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ . ns OP-IT @ . ns OP-ROA @ . ns OP-NPL @ . ns OP-VSL @ . ns OP-PTB @ . ns

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ . ns OP-IT @ . ns OP-ROA @ . ns OP-NPL @ . ns OP-VSL @ . ns OP-PTB @ . ns

 $\varepsilon = \sum_i (d_i/c - t_i)^2$

Objective:

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ . ns OP-IT @ . ns OP-ROA @ . ns OP-NPL @ . ns OP-VSL @ . ns OP-PTB @ . ns

 $\varepsilon = \sum_i (d_i/c - t_i)^2$

Objective:

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

 $\varepsilon = \sum_i (d_i/c - t_i)^2$

Objective:

 $min(\varepsilon(d_i))(x, y, z)$ for satellite position (x, y, z)

OP-SP @ . ns OP-IT @ . ns OP-ROA @ . ns OP-NPL @ . ns OP-VSL @ . ns OP-PTB @ . ns

Conclusion

- Ability to receive TWSTFT with a satellite-TV reception antenna
- Processing framework for extracting timing information from European observatories

https://github.com/oscimp/gr-satre

- Possible complement to GPS time dissemination if satellite motion compensation is achieved
- Generic framework using COTS hardware for synchronizing oscillators in the $10^{-9}\tau^{-1/2}$ range ^a
- In progress: better least-square fitting initialization + bounded solution space + Kalman filter
- In progress: Sagnac effect correction?
- Digital communication decoding

 ${}^{a}\sigma_{ au}\simeq 1$ ns @ 1 s

Challenge of satellite position estimate/prediction: NO-RAD's Two-Line Element description is poorly suited for geostationay satellite orbit description $^{a\ b}$

"The maximum accuracy for a TLE is limited by the number of decimal places in each field. In general, TLE data is accurate to about a kilometer or so at epoch and it quickly degrades.

Expect a satellite's orbit to constantly change as the SGP4 propagation routine models effects like atmospheric drag and the Moon's gravity. In particular, the true anomaly parameter can swing wildly for satellites with nearly circular orbits, because the reference point from which true anomaly is measured — the satellite's perigee — can be moved by even slight perturbations to the orbit "

^ahttps://rhodesmill.org/skyfield/ earth-satellites.html

^bD.A. Vallado, P. Crawford, R. Hujsak, T.S. Kelso, *Revisiting Spacetrack Report #3: Rev 3*,

FIRST Proc. AIAA/AAS Astrodynamics Specialist Conference (2006) at

https://celestrak.org/publications/AIAA/

49 / 49

2006-6753/AIAA-2006-6753-Rev3.pdf

Acknowledgements: all information publicly available but much easier to search if known

- ▶ J. Achkar, M. Lours et M. Dupont at SYRTE/Paris Observatory (France)
- ► F. Meyer, É. Meyer at Besançon Observatory (France)
- time-nuts@lists.febo.com mailing list and especially A. Bauch (PTB, Germany) and F. Meynadier (BIPM)