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ABSTRACT 

In this paper we  demonstrate an EM environment aware 

(EMEA) radio called the Intelligent Transceiver Radio Node 

(ITRN)  that is suitable for use in cognitive radio applications. 

The ITRN is an end-to-end solution that can quickly find 

interferers and act upon them in a defensive manner such as 

filter, move the channel, move to different band, etc. While the 

ITRN  is capable of finding interferers in both the spectral 

dimension, we present a framework that allows for future 

expandability into more measurement domains.   

To break to sensing time tradeoff with spectral and angular 

resolution, we employ the use of compressed sensing (CS). By 

making a few assumptions on the local EM environment’s 

current state, we are able to perform spatial and spectral scans 

that are a factor of 10 times faster than the current state of the 

art. Information on the spectral locations of the interferers, along 

with a current QoS estimate is then sent to a machine learning 

based decision engine (MLBDE) where reinforcement learning 

is used to determine the optimal channel selection. 

For the ITRN’s sensor, we use a custom 8 antenna RF-ASIC 

fabricated in TSMC 65nm CMOS called the Direct Space to 

Information Converter (DSIC). The output of the DSIC is sent to 

an Ettus X310 radio. A custom UHD interface was constructed 

in the field programmable gate array (FPGA) to speed the 

streaming data rate by using a variable data packet size. Custom 

UHD circuitry was also created to synchronize the DSIC with 

the clock on the X310.  

In GNU Radio, we perform the baseband DSP and Orthogonal 

Matching Pursuit (OMP) which is used to recover the spectral 

locations of the interferers. Lastly, the output of OMP along with 

a QoS estimation is sent to the MLBDE which calculates the new 

optimal channel selection and retunes the ITRN.  
 

 

Keywords - Cognitive Radio, Compressed Sensing, Software Defined 

Radio, Machine Learning, Reinforcement Learning, GNU Radio.  

I. BACKGROUND AND MOTIVATION 

Communications often take place in congested and contested 

spectral environments where conditions readily exist that impair 

network connectivity. Whether the impairment is due to ordinary 

congestion, geographical obstructions or malicious jamming, 

understanding the cause of the impairment and developing 

systems that can react to the environment, and thereby mitigate 

the interference, is increasingly becoming an important topic for 

tactical communication systems. The next generation of 

communications networks will need to be EM environment 

aware to effectively operate in both friendly and hostile 

congested RF environments [1].  

These adverse effects on communications can be further 

characterized by their external characteristics, for example, 

placement in the RF frequency spectrum, angular spectrum 

(direction of arrival or DoA) and time can be measured to help 

better characterize and take action to mitigate these harmful 

effects or signals. This can be seen in Figure 1 where a multi-

dimensional resource cube is used to better understand a signal 

of interest’s (SOI) effect on a communications node. 

While Figure 1 shows an EM state space of 3 dimensions, in 
reality there are many more possible dimensions that can be 
used to characterize the EM environment. Signal bandwidth 
(BW), terrain, fading and environmental noise can all be 
considered dimensions of an X dimensional resource cube, 
where X is the total number of measurement dimensions.  

Additionally, the optimal actions associated with countering a 
particular EM disturbance can also be considered a Y 
dimensional state space where Y is the total possible 
transceiver actions (e.g., move transceiver to a different 
channel, change modulation type, or change BW). Sensing all 
X  dimensions and finding the optimal transceiver action  out 
of Y  possible actions cannot be completed in an acceptable 
amount of time using pre-calculated decisions or with 
traditional sensing systems [1]. To minimize computation 
complexity and conserve energy in man-portable hardware, 
the system needs to learn and adapt to the numerous types of 
potential perturbation in the EM environment that the system 
may encounter. Such a system can be realized by leveraging 
machine learning (ML), compressed sensing (CS) and the 
advancements made in cognitive radio systems [2]. 
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In summary, this paper introduces the concept of an Intelligent 
Transceiver Radio Node (ITRN) that contains two 
submodules in addition to the transceiver system; the EM 
Environment Aware (EMEA) sensor and the Machine 
Learning Based Decision Engine (MLBDE). These 
components work in conjunction with each other to enable a 
fully-cognitive radio transceiver system capable of operating 
in hostile radio frequency (RF) environments. 

II. RELATED WORK AND OUR CONTRIBUTIONS 

A. Current State of the Art  

The purpose of the EMEA sensor is to provide an assessment 

of the state of the EM environment (e.g., locate interferers and 

find available whitespace in some domain). 

Traditional multi-domain EMEA sensors either consume 
too much energy or are not able to react quickly enough to 
capture fast reacting jammers. Typical commercially 
available frequency hopping spread spectrum (FHSS) 
radios have a pulse repetition rate of 2-10ms and a pulse 

time of 1-2ms. Measurement accuracy and node awareness 
requires a sensor to scan over a wide bandwidth and use as 
many measurement domains as possible in order to fully 
quantify the jammer’s effect on the system’s quality of 
service (QoS). For example, if N spectral bins, N spatial bins 
and N temporal bins require scanning, the total number of 
possible signal locations in the EM environment state space 
is proportional to N3, assuming DFT-like sensing 
matrices are used in each domain. In general, the number of 
measurements required will grow as a product of the 
measurement dimensions if traditional sensing techniques 
are used. 

Spectral occupancy of adversarial interference, obtained from an 
EM aware receiver, will allow the sensor transceiver to find new 
spectrum allocation for maintaining the communications link. 

A sample of current wideband spectrum sensing topologies is 
shown in Figure 2.  
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Figure 1. Illustration of an N-dimensional "resource cube" showing occupied resources in the EM environment. 
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To satisfy the scalability, speed and energy consumption 
requirements during sensing, energy-efficient wideband 
interferer detection is a key component of an EM aware receiver. 
Current state-of-the-art spectrum scanners rely on traditional 
spectral analysis that includes an intrinsic trade-off between span, 
resolution bandwidth and scan time. In a single branch sweeping 
scanner, as illustrated in Figure 3(a), each bin is scanned 
sequentially by sweeping the LO driving the I/Q downconverter. 
Covering a span greater than 10 GHz with a 20 MHz RBW 
requires scan times on the order of 2200 us, which results in large 
energy consumption and an inability to track agile targets.  

Parallelism, illustrated in Figure 3(b), can overcome the scan-
time limitations, but the energy requirements remain constant for 
a single-branch or a multi-branch realization. Additionally, 
circuit and system complexity does not scale well from a size, 
weight and power (SWAP) and system designer’s standpoint, 
(i.e., for a 1GHz span and 20MHz RBW), a 50-branch realization 
would have a 4.4 us sensing time but an impractical hardware 
complexity. On the other hand, a Nyquist-rate FFT solution, 
shown in Figure 3(c), would simplify the design architecture but 
require a prohibitively high sampling rate after down-conversion. 

III. ITRN SYSTEM OVERVIEW 

Figure 1 illustrated a 3D resource "cube" depicting the directions 

of  incident signals including the interferers in both the angle and 

frequency domains for multiple time snapshots. While there are 

many possible locations that signals can be in, even in a crowded 

RF environment, only a few possible angular locations are 

occupied at any one given time. This RF environmental 

characteristic is called "sparsity" and can be seen in Figure 3 (a), 

(b) and (c). 

We can exploit the sparsity of the frequency spectrum to yield 

circuit architectures that are faster and an order of magnitude 

more efficient than the current state of the art . This increase in 

speed and efficiency comes from the ability to use CS to sense 

signals with fewer random measurements than are required by a 

Nyquist-rate based systems [3].  For the signal vector  

𝒙 ∈ 𝐶𝑁 

where  

𝒙 = 𝚿 𝑿 

and 𝚿 is the 𝑁 × 𝑁 dictionary matrix and 𝑿 is an 𝑵 × 𝟏 vector 

with 𝐾 ≪ 𝑁 non-zero entries, with K the number of signals, CS 

states that 𝑿  can be recovered using 𝑚 = 𝐾  𝐶0 log (
𝑁

𝐾
)  linear 

projections on to a 𝑚 × 𝑁 sensing matrix 𝚽 that is incoherent 

with 𝚿[4].The system equation can be written as: 

𝒚  =  𝚽𝚿𝑿 

 

In the case of spectrum sensing, the x vector consists of time 

samples with a  DFT like dictionary matrix 𝚿. Recovery of X 

can be performed by a variety of convex optimization 

algorithms. Orthogonal Matching Pursuit (OMP) is used due to 

its simplicity and best tradeoff in accuracy and efficiency for 

highly sparse problems [4]. The concept of CS based spectrum 

sensing can be futher seen graphically in Figure . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. EMEA SENSOR  

A. The EMEA Sensor 

The EMEA sensor used in the ITRN is capable of performing CS 

based spectrum sensing and enables it to sense the wideband 

spectrum in fewer scans than the traditional swept LO or FFT 

methods in addition to consuming less power and energy. 

Several CS based architectures such as the MWC [5], QAIC [6], 

DRF2IC [7], DSIC [8] and DSS [9]  have demonstrated the 

advantages of using CS for sensing the EM environment at the 

hardware level.  

The entire ITRN can be seen in detail in Figures 5Figure (a) and 

(b) where interferers are incident upon the ITRNs antenna. The 

EMEA sensor quickly detects their spectral locations using a CS 

Figure 2. Illustration of sparsity in the frequency domain where 

K is the number of signals in the environment and N is the 

number of possible spectral locations. K<<N 

Figure 3. A survey of current spectrum sensing methodologies. 

Figure 4. Illustration of a CS based spectrum sensing system. 
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driven sensor architecture. The spectral locations are then sent to 

the MLBDE along with a measurement of the QoS (e.g., BER) 

of all channel locations. The MLBDE informs the ITRN of 

which new channel location is optimal.  

 

 

For this effort, the EMEA sensor used is the direct space to 

information converter (DSIC). The DSIC is capable of operating 

in many modes of operation (e.g., angular sensing, spectrum 

sensing, etc.). For this application, it is placed into spectrum 

sensing mode with a tunable frequency range of 500MHz to 

3GHz. The DSIC is a direct downconversion architecture and 

contains 8 antenna paths split into two banks of 4. All antenna 

paths are complete with independent LNAs, mixers and vector 

modulators (VMs).  The return loss (S11) at the antenna inputs 

is nominally better than -10dB from 1GHz to 3GHz. Conversion 

gain of each single receiver path with the VM adjusted to 

maximum amplitude is 32dB across an IF BW of 25MHz, NF,  

P1dB, and in-band IIP3 of each path at 1.5GHz are 6.4dB, 

11.3dBm, and 3.3dBm respectively. A detailed circuit diagram 

of the DSIC is shown in Figur. 

The output of the DSIC (y)  is first sent to a digital branch 

expansion module. The branch expansion module digitally 

downconverts m channels where each channel corresponds to a 

CS measurement. A detailed description of the branch expansion 

process can be seen in [7]. After branch expansion, the CS 

meaurements are sent to the OMP module where lastly, the 

spectral “supports” or SOIs are recovered. More details on the 

concept behind OMP can be seen in [4]. 

 

Figure  and Figure show the performance in terms of probability 

of detection and false alarm (Pd and Pfa) can be seen for the DSIC 

which a varying number of signals K  in the environment as well 

as signal position vs. incident signal power in dBm. The EMEA 

sensor is capable of detecting K=3 signals with as little as m=19 

CS measurements with a Pd >90%. 
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V. MACHINE LEARNING BASED DECISION ENGINE 

(MLBDE) 

The goal of the ITRN system’s MLBDE module is to compute in 
real-time an optimal recommended frequency bin that is both 
robust and high-performing. The MLBDE-recommended 
frequency bin is sent to the GNU Radio for dynamic tuning of the 
SDR configuration so that the SDR waveform will operate on a 
frequency bin that is best in terms of minimizing outages due to 
signal interference (i.e. robust) and minimizing the average 
channel bit error rate (i.e. high-performing). To compute an 
optimal recommended frequency bin, the MLBDE module 
processes spectrum sensing data streamed to it real-time from the 
EMEA CS module over a UDP socket interface. 

A. ML Channel Sensing Inputs 

The input sensing data received from the EMEA CS module 
consists of: (1) a list of IDs of frequency bins that are interfered 
(e.g., due to spectrum congestion or up to 10 such interfered bins) 
and (2) an array of bit error rate (BER) floating point values (up 
to 128 such values depending on the number of frequency bins).  

While the MLBDE module considers for each scan interval / 
policy action update the entire list of interfered bins as context in 
its decision logic, the MLBDE module’s ML decision logic is 
aware only of the BER value for the frequency bin it has 
recommended (and only after the bin has been selected to assure 
performance evaluation fairness). This BER value is needed to 
quantify the reward of its recommended frequency bin (and to 
update the cumulative reward and average reward scores). 

B. Multi-Armed Bandit (MAB) ML Problem Formulation 

The contextual multi-armed bandit (MAB) problem has been 
applied as a generalized abstraction for many practical 
applications [10]. The ITRN dynamic radio adaptation challenge 
represents another opportunity for which the contextual MAB 
problem formulation is applicable and to which machine learning 
(ML) techniques can be applied. In the MLBDE solution, the 
reward obtained by selecting a specific arm/action k (i.e., the 

action of selecting frequency bin At = k  {1,2,…,K}) at each step 
t is the complement of BER (i.e., 𝑅𝑡(𝐴𝑡 = 𝑘) = 1 − 𝑞𝑡(𝑘) 
where 𝑞𝑡(𝑘)  is the BER for frequency bin k over the interval 
associated with time step t). The MLBDE performance metric 
evaluated over N steps is the average step-by-step reward (𝑅̅𝑁): 

𝑅̅𝑁 =
1

𝑁
∑ 𝑅𝑡

𝑁

𝑡=1
=

1

𝑁
∑ (1 − 𝑞𝑡(𝐴𝑡))

𝑁

𝑡=1
 (1) 

As one of the data structures applied in its MAB decision logic to 
select a frequency bin (per Section Error! Reference source not 
found..C, next), the MLBDE maintains the average reward 
obtained for the occurrences of selecting frequency bin k over the 

course of N steps {1,2,…,N} (𝑅̅𝑁(𝑘)) for each frequency bin k  
{1,2,…,K}. Using the indicator function notation of “𝟏” 〖
_(𝐴_𝑡 = 𝑘)^  = 1 if 𝐴𝑡 = 𝑘 and 0 otherwise, the average reward 
obtained when selecting frequency bin k through N steps is the 
sum of rewards yielded by selecting frequency bin k divided 
number by the number of times frequency bin k was selected over 
the N steps {1,2,…,N}: 

𝑅̅𝑁(𝑘) =
∑ 𝑅𝑡

𝑁
𝑡=1 ∙ 1𝐴𝑡=𝑘

∑ 1𝐴𝑡=𝑘
𝑁
𝑡=1

 (2) 

Table 1 summarizes the MAB policies/heuristics implemented as 
part of the MLBDE policy suite to process the channel 
information received from the EMEA-CS module and output a 
recommended frequency bin. While all four versions of “hybrid-
greedy” heuristics listed in Table 1 provide effective means to 
facilitate the tradeoff between exploration and exploitation, the 
Epoch-Greedy procedure [10] intuitively is most practical for the 
challenge at hand by providing configurable control over the 
schedule by which the performance of alternative frequency bins 
are explored followed by a window in which the best performing 
frequency bin is exploited. Random policy procedures are 
implemented as part of the MLBDE policy suite primarily for 
comparison purposes where the pure random policy serves as a 
baseline for performance evaluation against which other MAB 
policies/heuristics are compared. 

Table 1. MAB Policies/Heuristics Implemented 

Policy / 

Heuristic 
Description of Policy/Heuristic 

Random 

Periodically select a random frequency irrespective of 

the interfered frequency set or its past selections 

Sticky Non-
Interfered 

A new frequency is not explored unless the current 
frequency is under interference 

Random Non-

Interfered 

Periodically select a random frequency as long as the 

frequency is not under interference 

-Greedy 

Perform random exploration with probability  
(exploration) but use best frequency o/w 

(exploitation) 

-First 
Perform pure exploration for first ɛN trials and then 
pure greedy exploitation for remaining (1 – ε)N trials 

-Decreasing 
Similar to ɛ-Greedy, but uses a decreasing ɛ value as 

the experiment progresses 

Epoch-Greedy  

Experiment proceeds as a sequence of epochs where, 

in each epoch, exploration of new frequency bin(s) is 

pursued first followed by exploitation of the best 
frequency bin for the remainder of the epoch 

C. ML Decision Logic for Greedy Heuristics 

While the reward metric Eq. (1) is used to quantify performance 
of the MLBDE module, the ML decision logic for its greedy 
heuristics must decide in each exploitation phase which 

frequency bin k  {1,2,…,K} should be selected for action 𝐴𝑁+1 
(and subsequent exploitation steps). For this purpose, the ML 
decision logic considers the average reward afforded by each 
frequency bin per Eq. (2).  

Furthermore, the ML decision logic also considers the set of 
interfered frequencies (St) inputted at each time step as side 
information which MLBDE leverages as a form of context (i.e., 

if frequency bin x  St then the expected reward in choosing x is 
low and bin x should not be selected). Therefore, aside from the 
pure random policy, the MLBDE-recommended frequency bin 
for the action at step t (either for exploration or exploitation), 
excludes candidate frequency bins that are interfered (i.e., in the 
set St). 

Two variations of the decision logic for greedy exploitation have 
been implemented. First, (3a) applies a basic decision logic 
metric that combines the frequency bin performance per (2) with 
awareness of currently interfered bins (SN+1) as context by which 
to prune the set of candidate bins. 
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𝐴𝑁+1 = max
𝑘∈{1,2,…,𝐾},

 {𝑘}∩𝑆𝑁+1=∅

𝑅̅𝑁(𝑘) 
(3a) 

Next, Eq. (3b) represents a compound decision logic metric that 
additionally considers the history of signal interference where 
𝑠𝑁(𝑘) is a cost term that discourages selection of (otherwise high-
performing) bins that are unfortunately frequently interfered. 
Here, the term 𝑠𝑁(𝑘) is the fraction of steps (out of the N steps 
{1,2,…,N}) for which frequency bin k was interfered. The 
intuition for applying the compound decision logic metric of (3b) 
is that it will promote selection of more robust (i.e., less likely to 
be interfered) frequency bins for exploitation. 

𝐴𝑁+1 = max
𝑘∈{1,2,…,𝐾},

 {𝑘}∩𝑆𝑁+1=∅

𝑅̅𝑁(𝑘) − 𝑠𝑁(𝑘) 
(3b) 

D. Proof-of-Concept Validation Results 

The MLBDE software was validated in standalone mode using 
channel sensor input data collected offline and saved to file. At 
experiment time, the sensor data was read from file and sent at 

“high speed” (e.g., 662 Hz) by a unit-test driver module to the 
MLBDE component via a UDP socket API. Table 2 summarizes 
the preliminary proof-of-concept MLBDE validation results. 
Epoch-Greedy was the ML heuristic enabled in the experiments 
behind these results. 

Table 2. MLBDE Proof-of-Concept Validation Tests 

Test Purpose Result / Key Finding 

Compare Random 

versus Greedy 

ML with greedy heuristics reduces avg. BER of 

selected frequency bin by factors of 7.76 to 26.9 

Process short scan 

interval updates 

For 101 freq. bins and 10 interfering signals, ML 

processed updates every 1509 s in real-time 

Validate use of 
interference info 

ML leveraged interfering signal side info to 
reduce avg. BER by factor of 2 (versus w/ none) 

Verify shift to 

robust bins by (3b) 

Compound metric per (3b) shifts the selected bin 

preference to less interfered bins by up to 74% 

 

VI. IMPLEMENTATION OF THE ITRN 

Construction of the ITRN was assisted by the use of the GNU 
Radio framework and UHD and this is shown in Figure and 
Figure. Figure shows the BER calculation circuit that establishes 
a link’s QoS with an outstation, and Figure shows all major signal 
processing blocks required for the ITRN to operate. An m= 19-
channel baseband channelizer is used to collect the CS 
measurements before being sent to the OMP engine to extract the 
K signals in the EM environment. The number of signals to detect 
K,  as well as OMP residue and threshold, are all configuration 
inside the OMP engine running in GNU Radio. Once the OMP 
engine finds the K signals, it sends them as a vector to the 
MLBDE along with the BER of all channels the ITRN can 
possibly use.  

It is necessary to synchronize the start and end of the CS 
measurement PN sequence with the digital channelization circuit 
built in GNU Radio. To do this, we use a “sync-pulse” that is sent 
from the EMEA sensor. The sync-pulse propagates through a 
pulse extender board and  then to the Ettus X300 front panel 
GPIO connector. UHD typically uses 32 bit complex sample (16 
bit I and Q) where bits 14 and 15 are zeros. By default, each 

channel sends 32 bits of data to GNU Radio for each sample. 
Because of the low dynamic range and high throughput 
requirements, the data vector was manipulated to include 14 bits 
of IQ data per channel and the sync signal in a single 32 bit vector, 
effectively doubling the throughput. 

The simplest way to modify the existing FPGA code to 
accomplish this was to modify the DDCs to share IQ data 
between each other and have the GNU Radio application receive 
data from a single DDC.  This can be seen in Figure 9.  

In this configuration, no changes had to be made to the existing 
AXI interfaces, which would have been more time-consuming. 
Where the DDCs are instantiated in the FPGA code, signals were 
created to send the down-converted IQ output of each DDC and 
its valid signal to a new input of the other DDC. It was discovered 
that the two DDCs do not necessarily output valid data on the 
same clock cycles. To correct for this, inside of one DDC, the 
valid data from the other DDC is written to a FIFO and then read 
out when the first DDCs data is valid. This ensures all data sent 
to GNU Radio will be valid, and without this buffer, one 
channel’s data will appear discontinuous. Before the DDC sends 
data to GNU Radio, it packages its own down-converted IQ, the 
down-converted IQ from the other channel, and the sync signal 
into a 32 bit word. 

The sync signal requires decimation to match the decimation rate 

of the DDC. The decimation rate of the sync signal is calculated 

based on the half-band filter rate and the the CIC decimation 

filter rate of the DDC. To preserve timing of the sync relative to 

the IQ data, it is buffered using a FIFO, which is read from when 

the DDC outputs valid data. 
  

Figure 9. Implementation of the new FPGA data format and sync 

signal incorporation. 
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Figure10. The entire ITRN system using the GNU Radio framework. 

Figure 11. The BER calculation circuit constructed using GNU Radio 
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Further, the delay of the sync signal through the FPGA is kept 

equal to the IQ data delay by embedding the sync in the MSB of 

the IQ data. This approach is valid assuming that the ADCs will 

not be saturated by the received signal. Special care must be 

taken to extract and reinsert the sync any time a mathematical 

operation is being done on the IQ data (e.g., front end correction, 

down-conversion). 

VII. PERFORMANCE AND COMPARISON  

Performance of the ITRN is characterized based on the 

independent performance tests of the EMEA sensor and MLBDE 

as seen above, as well as the construction and test of a prototype 

testbed suitable for data collection and demonstration. The ITRN 

testbed system diagram can be seen in Figure 12. Multiple signal 

generators are connected to the ITRN testbed simulating a 

variety of wideband, narrowband and frequency hopping 

interferers over a 500MHz RF bandwidth. To successfully sense 

this environment, the EMEA sensor is programmed with a 

508MHz PN clock, 1.5GHz LO and 127-bit PN sequence 

resulting in 4MHz channels and up to 19 CS measurements.  
 

Figure 13 shows a screenshot of the system GUI. In the top left, 

MLBDE output (green) as well as instantaneous interferer 

detections from the EMEA sensor can be seen. In the top right, 

the QoS for all channels (measured as BER) is also seen. Note 

the high BER in the middle of the 508MHz band coincident with 

the frequency hopping interferer locations. The bottom right 

shows the aggregate interferer detections from the EMEA sensor 

over 100 scans. Lastly, the bottom left shows a running waterfall 

of the EMEA sensor’s interferer detections. Also refer to the 

attached videos for more information on how the ITRN 

prototype testbed functions.  

VIII. CONCLUSIONS 

In this paper we showed the design and test of an intelligent 
transceiver radio node (ITRN) that is suitable for use as a 
cognitive radio (CR) component. It uses a Compressed Sensing 
(CS) driven receiver architecture that is used to sense the RF 
spectrum in a fraction of the time as current state-of-the-art 
techniques. To demonstrate the capability of the ITRN, an EM 
environment aware sensor (EMEA) was successfully integrated 
into the GNU Radio framework, the output of which indicates the 
spectral position of jammers or interferers. 

Jammer location is sent to a machine learning based decision 
engine (MLBDE) which in turn takes appropriate action (retunes, 
switches band, etc.) by making the optimal corrective decision 
based on reinforcement learning. The ITRN requires far less time 
to find interferers in frequency domain. Where Nyquist rate 
spectrum sensors require N measurements, the ITRN requires 
only m where 𝑚 = 𝐾  𝐶0  where K<<N, N is the number of 
possible interferer locations and K is the number of interferers the 
ITRN is programmed to find.  Output of the ITRN’s EMEA 
sensor is sent to the MLBDE where reinforcement learning 
allows the ITRN to find the most optimal decision on where to 
retune.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 13. Testing graphical user interface (GUI) screenshot. 

Figure 12. Circuit diagram showing the ITRN testbed with 

locations of critical components. 
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