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Introduction

• The EM environment is cluttered in multiple domains (frequency, time, angle, 
etc.) making reception with an outstation increasingly difficult.   

• Current detection methods for finding available receiver whitespace do not 
scale well in terms of speed and energy consumption. 

• We present a receiver architecture that can be used for sensing an emitter’s 
spectral location in a fraction of the time and energy as the current state of 
the art. 
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Problem 1: The more data available, the 
harder it is to rapidly exploit (sensing 
bottleneck).

Problem 2: Optimal decision situational 
dependent (decision bottleneck). 
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High Level System Diagram



Proposed Solution (and Assumptions about the EM Environment):

▪ Compressed Sensing (CS): By assuming sparsity (that there are much less jammers than possible 
signal locations (K<<N)), compressed sensing can be used to drastically reduce the time it takes to 
perform a spectrum scan. It is also much more scalable than current sensing methods.

Reinforcement Learning: 

▪ Using a ML based decision engine, we can make adaptive countermeasure decisions much more 
effectively than a lookup table (LUT) based approach. It is also more scalable than a complicated 
logic circuit or LUT.
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𝑚 = 𝐾𝐶𝑜log 𝑁/𝐾

• All spectrum sensing methodologies are ultimately 
limited by the Nyquist rate e.g. N measurements for N
possible signal locations.

• By exploiting sparsity in the spectrum, CS can be used to 
take as few as m measurements where m << N [5].
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• A fully custom, CS enabled RF-ASIC with a single HW 
branch is used, called the DSIC (Direct Space to 
Information Converter) [4]. 

• The DSIC uses LO modulation to sense the frequency 
spectrum on 1 or 8 antennas. 
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Electromagnetic Environment Aware (EMEA) Sensor

Won 3rd place at RFIC 2018! 



Each Point for K=1:
• 10 samples per experiment
• 1000 experiments
• 9 measurements (1 PN seq. → 9 by branch expansion)

OMP Iterations = 2
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Standalone Performance of the EMEA Sensor

                     

                      

 

  

  

  

  

  

  

  

  

  

   

 
 

                    

 
  

                    

Each Point for K=3:
• 10 samples per experiment
• 1000 experiments
• 19 measurements (1 PN seq. → 19 by branch expansion)

OMP Iterations = 4



Hardware Diagram
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• Embed sync input from GPIO port into IQ data to use as a time reference

• Reformat IQ data vector to include both channels' IQ data and sync signal in 32 
bits to increase throughput to GNU Radio application

FPGA Modification Goals
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• Adapted from UHD 3.15 official release

▪Most changes were made in noc_block_ddc.v

• Channel 0 and 1 DDCs (noc_block_ddc) will share baseband IQ samples and 
repackage the IQ data and sync.
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FGPA Modification Overview
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• Decimation

▪ Decimates sync signal at the same rate as 
the DDC and buffers the decimated sync 
with a FIFO to preserve time alignment with 
IQ data

• FIFO

▪ Buffers baseband IQ data to be sent to the 
other channel's noc_block_ddc instantiation

▪ Data is read out of the FIFO when the other 
channel's data is valid, ensuring the 
packaged data is valid on both channels

• Data Packager

▪ Packages IQ data from both channels and 
the sync into a single 32 bit vector

   

data out
va id

data in
va id

    

data out
rd en

data in
 r en

 ata   ac ager

data out
data in ch 
data in ch 
trigger

 ecima on

data out
trigger in
va id

data in
va id

data from 
other channe 
va id

trigger

data to 
other channe 

va id

to a i ifce

noc b oc  ddc v

Detailed FPGA Modifications

12

Decimation, FIFO and Data Packager are new components

sync
sync_in

sync



• Digital branch expansion is used in GNU Radio to create m virtual branches

• Each virtual branch corresponds to a CS measurement in the frequency domain: 𝑚 = 𝐾𝐶𝑜log 𝑁/𝐾

• Orthogonal Matching Pursuit (OMP) is used to recover the supports (e.g., Signals) -no signal 
reconstruction is required

Compressed Sensing Implementation
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MLBDE Input BER Cost Function Circuit
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•  he goa  of the   R  system’s Machine Learning-Based Decision Engine (MLBDE) module is to compute in real-time an optimal 
recommended frequency bin that is both robust and high-performing

• The MLBDE module processes spectrum sensing data streamed to it in real-time over a UDP socket interface that contains the set of 
frequency bins that are interfered (and estimates of channe  BER va ues used to “score” the MLB E recommended frequency bin)

   E:  he MLB E modu e’s ML  ogic is a are on y of the 
BER value for the frequency bin it has recommended 
(and only after the bin has been selected). This BER value 
is needed to quantify the reward of its recommended 
frequency bin (and to update its reward scores). 

NOTE: The interim average reward scores are outputted 
only for performance evaluation purposes to quantify 
the benefits of ML versus a random policy for channel 
selection.

MLBDE Software Architecture:

Machine Learning-Based Decision Engine (MLBDE) Overview
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• MAB policies / heuristics implemented as 
part of the MLBDE policy suite to process 
the channel information and output a 
recommended frequency bin:

Policy / 
Heuristic Description of Policy/Heuristic

Random Periodically select a random frequency irrespective of the 
interfered frequency set or its past selections

Sticky Non-
Interfered

A new frequency is not explored unless the current 
frequency is under interference

Random Non-
Interfered

Periodically select a random frequency as long as the 
frequency is not under interference

-Greedy Perform random exploration with probability 
(exploration) but use best frequency o/w (exploitation)

-First  erform pure e p oration for first ɛ  tria s and then pure 
greedy exploitation for remaining (1 – ε)  tria s

-Decreasing Similar to ɛ- reedy, but uses a decreasing ɛ va ue as the 
experiment progresses

Epoch-Greedy Experiment proceeds as a sequence of epochs where, in 
each epoch, exploration of new frequency bin(s) is 
pursued first followed by exploitation of the best 
frequency bin for the remainder of the epoch

• The MLBDE casts the ITRN frequency bin selection challenge as 
an instance of the contextual multi-armed bandit (MAB) problem

• The reward obtained by the action (At) of selecting frequency bin 
At = k  {1,2,…,K} at each step t is the complement of BER:
– I.e. 𝑅𝑡 𝐴𝑡 = 𝑘 = 1 − 𝑞𝑡 𝑘 where 𝑞𝑡 𝑘 is the BER for 

frequency bin k over the interval associated with time step t
– The MLBDE performance metric evaluated over N steps is the 

average step-by-step reward ( ത𝑅𝑁):

• ത𝑅𝑁 =
1

𝑁
σ𝑡=1
𝑁 𝑅𝑡 =

1

𝑁
σ𝑡=1
𝑁 1 − 𝑞𝑡 𝐴𝑡

– The average reward yielded when selecting frequency bin k:

• ത𝑅𝑁 𝑘 =
σ𝑡=1
𝑁 𝑅𝑡∙1𝐴𝑡=𝑘
σ𝑡=1
𝑁 1𝐴𝑡=𝑘

• Defining St as the set of frequency bins experiencing interference 
and 𝑠𝑁 𝑘 as the fraction of steps (out of the N steps {1,2,…,N}) 
for which frequency bin k was interfered, the ML decision logic 
selects a high-performing bin (𝐴𝑁+1) according to ത𝑅𝑁 𝑘 while 
avoiding bins in St :

– 𝐴𝑁+1 = max
𝑘∈ 1,2,…,𝐾 ,
𝑘 ∩𝑆𝑁+1=∅

ത𝑅𝑁 𝑘 − 𝑠𝑁 𝑘
I.e. the ML decision logic uses the sensing-derived side 
information about interfered frequency bins as context

• Random policy procedures implemented 
primarily for comparison purposes

Multi-Armed Bandit (MAB) ML Problem Formulation
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• The MLBDE software was validated in standalone mode using channel sensor input data collected offline and saved to 
file
▪ MLBDE software compiled with g++ 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)
▪  ested on a “modest”  buntu  8  4 machine (Intel(R) Core(TM)2 Duo CPU     P8700  @ 2.53GHz, 2 GB RAM)

•  t e periment time, the sensor data  as read from fi e and sent at “high speed” (e.g. 662 Hz → ~1.51 ms intervals) 
by a unit-test driver module to the MLBDE component via UDP socket API
▪ Higher channel sensor input data rates are potentially supportable and are an area of further investigation

• Epoch-Greedy was the ML heuristic enabled in the experiments behind these results

Test Purpose Result / Key Finding

Compare Random policy versus 
Greedy heuristic

ML with Epoch-Greedy heuristic in use for 2 distinct input data sets reduced avg. BER of selected 
frequency bin by factors of 7.76 and 26.9 versus avg. BER achieved by a baseline Random policy 

Process fast channel sensor 
updates

For a representative experiment with 101 frequency bins and 10 interfering signals per sensor update (@ 
~662 Hz), MLBDE processed sensor updates originated every 1509 s in real-time

Validate use of interference side 
information (versus not)

Epoch-Greedy ML use of interfering signal side information yielded a reduction in avg. BER by a factor of 
2 (versus w/ no side information) → Example of spectrum sensing benefit

Verify shift to robust bins by using 
𝑠𝑁 𝑘 in decision logic

Using a compound metric ( ത𝑅𝑁 𝑘 − 𝑠𝑁 𝑘 ) to select next frequency bin (𝐴𝑁+1) versus pure reward metric 
( ത𝑅𝑁 𝑘 ) shifts selected the bin preference to less-interfered bins by up to 74%

MLBDE Proof-of-Concept Validation Results
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Demo Video



MLBDE output changes with jammer placement
MLBDE Channel selection (green) movement 
when static jammer added
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System GUI and Example Data
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Conclusions and Future Work

• A Compressed Sensing (CS) driven receiver architecture can be used to sense the RF 
spectrum in a fraction of the time as current state-of-the-art techniques

• As a proof-of-concept, a CS-enabled EM environment aware sensor was successfully 
integrated into the GNU Radio framework, the output of which indicates the spectral 
position of jammers or interferers

• Jammer location is sent to a machine learning-based decision engine (MLBDE) which in 
turn takes appropriate action (retunes, switches band, etc.) by making the optimal 
corrective decision based on reinforcement learning

• We are currently benchmarking the ITRN and comparing it against other EMEA sensing 
architectures. 

22



[1] J. Mitola, “ ognitive radio for f e ib e mobi e mu timedia communications”, in  roc   EEE  nt  Wor shop Mobi e Mu timedia  ommunications 
(MoMu ’99) ( at   o 99E 384),  ov  999, pp  3–10.

[2]  nternationa  Wor ing  roup “ EEE p8 2  22/d     standard for  ire ess regiona  area net or s part 22:  ognitive  ire ess ran medium access 
control (mac) and physical layer (phy) specifications:  o icies and procedures for operation in the tv bands”,  EEE docs, pp  22–06, 2008

[3] E   andes, “ ompressive samp ing ”  roc   nt   ongress of Math, vo   Aug., pp. 67–94, 2006.

[4] M  Bajor et a  , “ n 8-Element, 1-3GHz Direct Space-to-Information Converter for Rapid, Compressive-Sampling Direction-of-Arrival Finding 
Utilizing Pseudo-Random Antenna-Weight Modu ation,” in R      EEE, 2  7 

[5] J      ropp and        i bert, “Signa  recovery from random measurements via orthogona  matching pursuit,”  EEE  rans   nf. Theory, pp. 4655–
4666, 2007.

References

23


