

Columbia Integrated Systems Laboratory

A S P E N

High-Speed Sensing of the Electromagnetic Environment for Cognitive Radio Receivers Presenters: Matt Bajor, Ron Li

Outline

- Introduction
- Background and Motivation
 - High-Level System Diagram
- Problem Solution
- Electromagnetic Environment Aware (EMEA) Sensor
 - Standalone Performance
- Hardware Diagram
 - Modifications to the FPGA
 - Compressed Sensing Implementation in GNU Radio
 - MLBDE Input BER Cost Function Circuit
- Machine Learning-Based Decision Engine (MLBDE) Overview
- Multi-Armed Bandit (MAB) ML Problem Formulation
- MLBDE Proof-of-Concept Validation Results
- References

Introduction

- The EM environment is cluttered in multiple domains (frequency, time, angle, etc.) making reception with an outstation increasingly difficult.
- Current detection methods for finding available receiver whitespace do not scale well in terms of speed and energy consumption.
- We present a receiver architecture that can be used for sensing an emitter's spectral location in a fraction of the time and energy as the current state of the art.

Background and Motivation

Figure 1: N-dimensional "Resource Cube"

Strategy to Mitigate Bottlenecks: Combine Compressed (CS) Sensing with Machine Learning (ML)

A S P E N

High Level System Diagram

5

Problem Solution

Proposed Solution (and Assumptions about the EM Environment):

 Compressed Sensing (CS): By assuming sparsity (that there are much less jammers than possible signal locations (K<<N), compressed sensing can be used to drastically reduce the time it takes to perform a spectrum scan. It is also much more scalable than current sensing methods.

Reinforcement Learning:

 Using a ML based decision engine, we can make adaptive countermeasure decisions much more effectively than a lookup table (LUT) based approach. It is also more scalable than a complicated logic circuit or LUT.

Electromagnetic Environment Aware (EMEA) Sensor

- All spectrum sensing methodologies are ultimately limited by the Nyquist rate e.g. *N* measurements for *N* possible signal locations.
- By exploiting sparsity in the spectrum, CS can be used to take as few as *m* measurements where *m* << *N* [5].

 $m = KC_o \log(N/K)$

- A fully custom, CS enabled RF-ASIC with a single HW branch is used, called the DSIC (Direct Space to Information Converter) [4].
- The DSIC uses LO modulation to sense the frequency spectrum on 1 or 8 antennas.

Won 3rd place at RFIC 2018!

LNA + MIXER

25% Duty Cycle LOG

LNA +

MIXER \$

Standalone Performance of the EMEA Sensor

۲

1000 experiments

19 measurements (1 PN seq. \rightarrow 19 by branch expansion)

OMP Iterations = 4

- 1000 experiments
- 9 measurements (1 PN seq. → 9 by branch expansion)
 OMP Iterations = 2

Hardware Diagram

FPGA Modification Goals

- Embed sync input from GPIO port into IQ data to use as a time reference
- Reformat IQ data vector to include both channels' IQ data and sync signal in 32 bits to increase throughput to GNU Radio application

Кеер

Discard

FGPA Modification Overview

- Adapted from UHD 3.15 official release
 - Most changes were made in noc_block_ddc.v
- Channel 0 and 1 DDCs (noc_block_ddc) will share baseband IQ samples and repackage the IQ data and sync.

Detailed FPGA Modifications

Decimation, FIFO and Data Packager are new components

- Decimation
 - Decimates sync signal at the same rate as the DDC and buffers the decimated sync with a FIFO to preserve time alignment with IQ data
- FIFO
 - Buffers baseband IQ data to be sent to the other channel's noc_block_ddc instantiation
 - Data is read out of the FIFO when the other channel's data is valid, ensuring the packaged data is valid on both channels
- Data Packager
 - Packages IQ data from both channels and the sync into a single 32 bit vector

Compressed Sensing Implementation

- Digital branch expansion is used in GNU Radio to create *m* virtual branches
- Each virtual branch corresponds to a CS measurement in the frequency domain: $m = KC_0 \log(N/K)$
- Orthogonal Matching Pursuit (OMP) is used to recover the supports (e.g., Signals) -no signal reconstruction is required

CONSULTING

MLBDE Input BER Cost Function Circuit

ASPEN CONSULTING BROUP INC

Machine Learning-Based Decision Engine (MLBDE) Overview

- The goal of the ITRN system's Machine Learning-Based Decision Engine (MLBDE) module is to compute in real-time an optimal recommended frequency bin that is both robust and high-performing
- The MLBDE module processes spectrum sensing data streamed to it in real-time over a UDP socket interface that contains the set of frequency bins that are interfered (and estimates of channel BER values used to "score" the MLBDE recommended frequency bin)

Multi-Armed Bandit (MAB) ML Problem Formulation

- The MLBDE casts the ITRN frequency bin selection challenge as an instance of the contextual multi-armed bandit (MAB) problem
- The reward obtained by the action (A_t) of selecting frequency bin $A_t = k \in \{1, 2, ..., K\}$ at each step t is the complement of BER:
 - I.e. $R_t(A_t = k) = 1 q_t(k)$ where $q_t(k)$ is the BER for frequency bin k over the interval associated with time step t
 - The MLBDE performance metric evaluated over N steps is the average step-by-step reward (\overline{R}_N):

•
$$\bar{R}_N = \frac{1}{N} \sum_{t=1}^N R_t = \frac{1}{N} \sum_{t=1}^N (1 - q_t(A_t))$$

- The average reward yielded when selecting frequency bin k:
 - $\overline{R}_N(k) = \frac{\sum_{t=1}^N R_t \cdot \mathbf{1}_{A_t=k}}{\sum_{t=1}^N \mathbf{1}_{A_t=k}}$
- Defining S_t as the set of frequency bins experiencing interference and $s_N(k)$ as the fraction of steps (out of the N steps $\{1,2,\ldots,N\}$) for which frequency bin k was interfered, the ML decision logic selects a high-performing bin (A_{N+1}) according to $\overline{R}_N(k)$ while avoiding bins in S_t :

$$-A_{N+1} = \max_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - S_N(k)$$

$$\lim_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_{N+1} = \emptyset}} \overline{R}_N(k) - \sum_{\substack{k \in \{1,2,\dots,K\},\\\{k\} \cap S_N(k) = \emptyset}} \overline{R}_N(k)$$

 MAB policies / heuristics implemented as part of the MLBDE policy suite to process the channel information and output a recommended frequency bin:

Policy /	
Heuristic	Description of Policy/Heuristic
Random	Periodically select a random frequency irrespective of the interfered frequency set or its past selections
Sticky Non- Interfered	A new frequency is not explored unless the current frequency is under interference
Random Non- Interfered	Periodically select a random frequency as long as the frequency is not under interference
ε-Greedy	Perform random exploration with probability ϵ (exploration) but use best frequency o/w (exploitation)
ε-First	Perform pure exploration for first ϵN trials and then pure greedy exploitation for remaining $(1 - \epsilon)N$ trials
ε-Decreasing	Similar to ε-Greedy, but uses a decreasing ε value as the experiment progresses
Epoch-Greedy	Experiment proceeds as a sequence of epochs where, in each epoch, exploration of new frequency bin(s) is pursued first followed by exploitation of the best frequency bin for the remainder of the epoch

 Random policy procedures implemented primarily for comparison purposes

MLBDE Proof-of-Concept Validation Results

- The MLBDE software was validated in standalone mode using channel sensor input data collected offline and saved to file
 - MLBDE software compiled with g++ 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)
 - Tested on a "modest" Ubuntu 18.04 machine (Intel(R) Core(TM)2 Duo CPU P8700 @ 2.53GHz, 2 GB RAM)
- At experiment time, the sensor data was read from file and sent at "high speed" (e.g. ~662 Hz ← ~1.51 ms intervals) by a unit-test driver module to the MLBDE component via UDP socket API
 - Higher channel sensor input data rates are potentially supportable and are an area of further investigation
- **Epoch-Greedy** was the ML heuristic enabled in the experiments behind these results

Test Purpose	Result / Key Finding
Compare Random policy versus Greedy heuristic	ML with Epoch-Greedy heuristic in use for 2 distinct input data sets reduced avg. BER of selected frequency bin by factors of 7.76 and 26.9 versus avg. BER achieved by a baseline Random policy
Process fast channel sensor updates	For a representative experiment with 101 frequency bins and 10 interfering signals per sensor update (@ 60 GeV Hz), MLBDE processed sensor updates originated every 1509 μ s in real-time
Validate use of interference side information (versus not)	Epoch-Greedy ML use of interfering signal side information yielded a reduction in avg. BER by a factor of \sim 2 (versus w/ no side information) \rightarrow Example of spectrum sensing benefit
Verify shift to robust bins by using $s_N(k)$ in decision logic	Using a compound metric $(\overline{R}_N(k) - s_N(k))$ to select next frequency bin (A_{N+1}) versus pure reward metric $(\overline{R}_N(k))$ shifts selected the bin preference to less-interfered bins by up to 74%

Simulated EM Environment

Demo Video

System GUI and Example Data

20 A S P E N CONSULTING BROUP INC

Future Work Sensor Work

Conclusions and Future Work

- A Compressed Sensing (CS) driven receiver architecture can be used to sense the RF spectrum in a fraction of the time as current state-of-the-art techniques
- As a proof-of-concept, a CS-enabled EM environment aware sensor was successfully integrated into the GNU Radio framework, the output of which indicates the spectral position of jammers or interferers
- Jammer location is sent to a machine learning-based decision engine (MLBDE) which in turn takes appropriate action (retunes, switches band, etc.) by making the optimal corrective decision based on reinforcement learning
- We are currently benchmarking the ITRN and comparing it against other EMEA sensing architectures.

References

[1] J. Mitola, "Cognitive radio for flexible mobile multimedia communications", in Proc. IEEE Int. Workshop Mobile Multimedia Communications (MoMuC'99) (Cat. No.99EX384), Nov.1999, pp. 3–10.

[2] International Working Group "IEEE p802. 22/d1. 0 standard for wireless regional area networks part 22: Cognitive wireless ran medium access control (mac) and physical layer (phy) specifications: Policies and procedures for operation in the tv bands", IEEE docs, pp. 22–06, 2008

[3] E. Candes, "Compressive sampling." Proc. Int. Congress of Math, vol. Aug., pp. 67–94, 2006.

[4] M. Bajor et al., "An 8-Element, 1-3GHz Direct Space-to-Information Converter for Rapid, Compressive-Sampling Direction-of-Arrival Finding Utilizing Pseudo-Random Antenna-Weight Modulation," in RFIC. IEEE, 2017.

[5] J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, pp. 4655–4666, 2007.

