Software-defined mmWave Initial Access using GNU Radio

Joao Santos, Aloizio P. DaSilva, Luiz A. DaSilva, Jacek Kibilda Commonwealth Cyber Initiative | Virginia Tech GNU Radio Conference, September 28th, 2022

Commonwealth Cyber Initiative

- **Expose control** of mmWave front-ends in GNU Radio
- Implement a flexible **initial access control loop**
- Enabling high-level experiments, e.g., beam management & initial access design trade-offs

Outline

Commonwealth Cyber Initiative

- Motivation
- Implementation
- Experimental Results
- Conclusions

OTA Experiments < 6GHz

(SISO, omnidirectional antennas)

Distance and gain play a huge role to set up the experiment

GNURadio

 Great for broadcast experiments

- Combine **flexibility** of SDRs with **directionality** of mmWave front-ends (InterDigital, Sivers, etc)
- Experiments **characterizing** equipment and medium

OTA Experiments > 6GHz

(using mmWave front-ends)

00 000

 Beyond distance and gain, now the **direction** also plays a huge role

Initial Access Procedure

Locate TX and RX before establishing communication

7

- Manual beam steering may be **impractical**
- Initial access **dynamically locates** TX and RX
- Proving the environment to find the **best beams**
- MAC-level functionality missing from GNU Radio

Current mmWave Front-ends InterDigital MHU Sivers EVK

- Multi-element **phased-array antenna modules**
- RF chains for up/down converting from/to IF
- Real-time control over GPIO and/or SPI:
 - Transmission mode (TX, RX, TRX, off)
 - Gain (TX, RX)
 - Codebooks, a.k.a., beams (TX/RX direction)

SofTwAre-defined Mmwave INitial Access (STAMINA)

cyberinitiative.org

Abstracting GPIO Control

- Different pins and ranges for the **same functionality**
- **Parameterization** to different models using config files
- Incorporating hardware-specific considerations
- Expose high-level abstraction as a GNU Radio block

Abstracting GPIO Control

Commonwealth Cyber Initiative

• Different pins and ranges for the **same functionality**

Beam Index

- **Parameterization** to different models using config files
- Incorporating hardware-specific considerations
- Expose high-level abstraction as a GNU Radio block

Abstracting GPIO Control

- Different pins and ranges for the **same functionality**
- Parameterization to different models using config files
- Incorporating hardware-specific considerations
- Expose high-level abstraction as a GNU Radio block

Commonwealth Cyber Initiative

Source IO Samples RSS Calculator • 1 RSS RSS w/ Beam KPI Beam Pair Selector Aggregator Decision Making Metrics Collection 13

Signal Strength (RSS) from

- Using the highest RSS to decide the **best beam pair** for data transmission
- Loop and adapt to changes

Initial Access Control Loop

- Iteratively **sweeping** over different beams
- Capturing the Received different directions

Realization in GNU Radio

- Arbitrary sweep
 sequences, beam
 durations, cadence of
 measurements
- Use blocks **standalone** or altogether
- **Asynch** messages to pass control information

Realization in GNU Radio

- Arbitrary sweep sequences, beam durations, cadence of measurements
- Use blocks **standalone** or altogether
- **Asynch** messages to pass control information

Realization in GNU Radio

- Arbitrary sweep sequences, beam durations, cadence of measurements
- Use blocks **standalone** or altogether
- **Asynch** messages to pass control information

Development Setup

Hardware Components

Development Setup

System Design

Experimental Results Platform Validation

- Successfully controlled beams
- Observed different power levels according to orientation

(a) Accuracy of the IA procedure to select the correct beam pair, known a priori by design.

(b) Average packet rate obtained when transmitting data after running the IA procedures.

 Users can play with initial access parameters to obtain desired performance

This Isn't Even My Final Form...

- Still work in progress
- A couple things on our roadmap:
 - Replace async messages by something better
 - Mux between payload and known control frames
- Contact
 - joaosantos@vt.edu
- Source code available on GitHub (but you'll need a front-end): https://github.com/CCI-NextG-Testbed/gr_stamina
- CCI xG Testbed (we are open to collaborations!) https://cyberinitiative.org/xg-testbed.html

Join us November 7-8th

NSF IUCRC Next G Center Planning Workshop

OVT Research Center, Arlington VA Registration: wisper@cyberinitiative.org

cyberinitiative.org