
GNU Radio 4.0: Standing on the Shoulders of Giants
An Overview of New Features and Significant Enhancements

 Josh Morman1, Derek Kozel1, Ralph J. Steinhagen2

on behalf of: the GR Architecture Team, Björn Balazs3, Giulio Camuffo3, Ilya Doroshenko3, Alexander Krimm2, Semën Lebedev2,
Ivan Čukić3, Matthias Kretz2, Frank Osterfeld3, …

1 GNU Radio 4.0 (lead)
2 FAIR – Facility for Anti-Proton and Ion Research & GSI, Darmstadt, Germany
3 KDAB Berlin, Germany

Sweden France India Finland Germany Poland UK Romania Russia Slovenia

2023-09-07

photos courtesy: https://fieldertree.com/
https://en.wikipedia.org/wiki/Standing_on_the_shoulders_of_giants

… GR 4.0 opportunity: preserve what is good, prune what is unhealthy to
keep the project growing and maintainable for another 20 years

Modernisation Goals
GNU Radio organically grew the past 20 years ...

https://fieldertree.com/
https://en.wikipedia.org/wiki/Standing_on_the_shoulders_of_giants

industry

government

science

 Promote …

collaboration

knowledge exchange

adoption

reliance
on ‘true’
industry

standards
reducing
cognitive

complexity

reducing
learning
curve

academia

Modernisation Goals
simplify onboarding for new contributors to participate/contribute more effectively

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.
– thin Python interface over C++ API
– avoid Python-only implementations (except OOT modules)
– swappable runtime components (both in and out of tree)
– simplified block development: get block developers to

"insert code here" without lots of boilerplate or complicated code
2. Clean- and Lean Code-Base Redesign

3. Performance Optimisations

4. Tag-Based Timing System Integration (White Rabbit, GPS, SW-based etc.)

5. Advanced Processing Features

6. Broaden Cross-Platform Support (including WebAssembly)

7. User-pluggable Work Scheduler Architecture

8. Overall Project Direction

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – “Hello GNU Radio World!”

struct BasicMultiplier : public node<BasicMultiplier> {
 IN<float> in;
 OUT<float> out;
 float scaling_factor = static_cast<float>(1);

 [[nodiscard]] constexpr float
 process_one(const float &a) const noexcept {
 return a * scaling_factor;
 }
};

ENABLE_REFLECTION_FOR(BasicMultiplier, in, out, scaling_factor);Key Take-Aways:
● Simplified Block Development: stand-alone creation is more intuitive. Code is the single source of truth.

Feedback? Let's discuss!
● Efficient Functional Unit Testing: directly test blocks without embedding in flow-graphs

● offer three basic (optional) API variants: sample-by-sample, chunked, or arbitrary processing (i.e. ‘work(…)’) function
● Compiler-Optimised Interface: Type-strictness and constraints help w.r.t. efficient compiler optimisations
● Early Error Detection: most issues caught during compile time, reducing errors and debugging during run-time

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – with SIMD acceleration

template<typename T>
requires (std::is_arithmetic<T>())
struct BasicMultiplier : public node<BasicMultiplier<T>> {
 IN<T> in;
 OUT<T> out;
 T scaling_factor = static_cast<T>(1);

 template<t_or_simd<T> V> // → intrinsic SIMD support
 [[nodiscard]] constexpr V
 process_one(const V &a) const noexcept {
 return a * scaling_factor;
 }
};

ENABLE_REFLECTION_FOR_TEMPLATE_FULL((typename T),(BasicMultiplier<T>), in, out, scaling_factor);

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – classic bulk operation I/II

template<typename T>
requires (std::is_arithmetic<T>())
struct BasicMultiplier : public node<BasicMultiplier<T>> {
 IN<T> in;
 OUT<T> out;
 T scaling_factor = static_cast<T>(1);

 void // alternate interface
 process_bulk(std::span<const T> in, std::span<T> out) {
 std::ranges::transform(in, out.begin(), [sf = scaling_factor](const T& val) {
 return val * sf;
 });
 }
};

ENABLE_REFLECTION_FOR_TEMPLATE_FULL((typename T), (BasicMultiplier<T>),in,out,scaling_factor,context);

Fun Fact (aka. beware of ‘premature optimisations’):
Benchmarking proved that using ‘process_one(…)’ is numerically more performant than ‘process_bulk(…)’

rationale: locality, reduced scope that can be better exploited by the compiler and L1/L2/L3 CPU cache.

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – classic bulk operation II/III

template<typename T>
requires (std::is_arithmetic<T>())
struct BasicMultiplier : public node<BasicMultiplier<T>> {
 IN<T> in;
 OUT<T> out;
 T scaling_factor = static_cast<T>(1);

 void // alternate interface with variable amount of input and output consumed
 process_bulk(ConsumableSpan auto& in, PublishableSpan auto& out) const noexcept {
 // [..] user-defined processing logic [..]
 in.consume(3UL); // consume 3 samples
 out.publish(2UL); // publish 2 samples → effectively a 3:2 re-sampler
 }
};

ENABLE_REFLECTION_FOR_TEMPLATE_FULL((typename T), (BasicMultiplier<T>),in,out,scaling_factor,context);

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – Decimator & Interpolator

template<typename T>
requires (std::is_arithmetic<T>())
struct Resampler : public node<Resampler<T>, PerformDecimationInterpolation, PerformStride> {
 IN<T> in;
 OUT<T> out;

 void // ‘in’ and ‘out’ matched N x numerator & N x denominator samples
 process_bulk(std::span<const T> in, std::span<T> out) const noexcept {
 // [..] user-defined re-sampling logic [..]
 }
};
ENABLE_REFLECTION_FOR_TEMPLATE_FULL((typename T), (Resampler<T>), in, out);

optional NTTP parameters → “only-pay-for-what you use”

[..] user application code:
graph flow; // flow-graph object owning the blocks/connections
auto &block = flow.make_node<Resampler<float>>({“numerator”, 1024UL}, {“denominator”, 1UL});
// skipping 10k samples
block.settings().set({“stride”, 10’000UL}); // std::map<std::string, pmt_t> interface
// alternate direct interface
block.stride = 10’000UL;
block.update_active_parameters(); // N.B. synchronises PMT-map representation

Shout-out to: Semën Lebedev for fleshing this out and covering most corner cases

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – “Hello GNU Radio World!” V2

template<typename T>
requires (std::is_arithmetic<T>())
struct BasicMultiplier : public node<BasicMultiplier<T>> {
 IN<T> in;
 OUT<T> out;
 T scaling_factor = static_cast<T>(1);
 std::string context; // ↔ multiplexing settings

 template<t_or_simd<T> V>
 [[nodiscard]] constexpr V
 process_one(const V &a) const noexcept {
 return a * scaling_factor;
 }
};

ENABLE_REFLECTION_FOR_TEMPLATE_FULL((typename T),(BasicMultiplier<T>),in,out,scaling_factor,context);

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – Settings Management

template<typename T>
requires (std::is_arithmetic<T>())
struct BasicMultiplier : public node<BasicMultiplier<T>> {
 IN<T> in;
 OUT<T> out;
 T scaling_factor = static_cast<T>(1);
 std::string context; // ↔ multiplexing settings

 void settings_changed(const property_map &old, const property_map &new) {
 // optional function that is called whenever settings change
 }

 template<t_or_simd<T> V>
 [[nodiscard]] constexpr V
 process_one(const V &a) const noexcept {
 return a * scaling_factor;
 }
};

ENABLE_REFLECTION_FOR_TEMPLATE_FULL((typename T),(BasicMultiplier<T>),in,out,scaling_factor,context);

two settings update mechanisms:
a) via thread-safe getter/setter (std::map<string, pmt_t>)
b) via streaming tags

N.B. ‘process_XXX’ is (default) invoked with the first
sample after settings have been applied

c) via async message port (std::map<string, pmt_t>)

Shout-out to: John Sallay for providing the new PMT library extension (pls. buy him a beer).

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – FIR pre-production code

template<typename T>
requires std::floating_point<T>
struct fir_filter : node<fir_filter<T>, Doc<R""(
@brief Finite Impulse Response (FIR) filter class

The transfer function of an FIR filter is given by:
H(z) = b[0] + b[1]*z^-1 + b[2]*z^-2 + ... + b[N]*z^-N
)"">> {
 IN<T> in;
 OUT<T> out;
 std::vector<T> b{}; // feedforward coefficients
 history_buffer<T> inputHistory{ 32 };

 void
 settings_changed(const property_map & /*old_settings*/, const property_map &new_settings) noexcept {
 if (new_settings.contains("b") && b.size() >= inputHistory.capacity()) {
 inputHistory = history_buffer<T>(std::bit_ceil(b.size()));
 }
 }

 constexpr T
 process_one(T input) noexcept {
 inputHistory.push_back(input);
 return std::inner_product(b.begin(), b.end(), inputHistory.rbegin(), static_cast<T>(0));
 }
};

1. Preserve and Grow the existing diverse GR Ecosystem
"insert code here" without lots of boilerplate or complicated code – IIR pre-production code

template<typename T, IIRForm form = std::is_floating_point_v<T> ? IIRForm::DF_II : IIRForm::DF_I>
requires std::floating_point<T>
struct iir_filter : node<iir_filter<T, form>, Doc<R""(
@brief Infinite Impulse Response (IIR) filter class

b are the feed-forward coefficients (N.B. b[0] denoting the newest and n[-1] the previous sample)
a are the feedback coefficients
)"">> {
 IN<T> in;
 OUT<T> out;
 std::vector<T> b{ 1 }; // feed-forward coefficients
 std::vector<T> a{ 1 }; // feedback coefficients
 history_buffer<T> inputHistory{ 32 };
 history_buffer<T> outputHistory{ 32 };

 void
 settings_changed(const property_map & /*old_settings*/, const property_map &new_settings) noexcept {
 // [..] adjust history buffer sizes in case filters are changed
 }

 [[nodiscard]] T
 process_one(T input) noexcept {
 if constexpr (form == IIRForm::DF_I) {
 // y[n] = b[0] * x[n] + b[1] * x[n-1] + ... + b[N] * x[n-N]
 // - a[1] * y[n-1] - a[2] * y[n-2] - ... - a[M] * y[n-M]
 inputHistory.push_back(input);
 const T output = std::inner_product(b.begin(), b.end(), inputHistory.rbegin(), static_cast<T>(0)) //feed-forward
 - std::inner_product(a.begin() + 1, a.end(), outputHistory.rbegin(), static_cast<T>(0)); //feedback path
 outputHistory.push_back(output);
 return output;
 } else { /* handle other IIR forms */ }
};

Note for the eagle-eyed: this is not your dad’s C/C++98 ...
● primarily use STD-only C++20 (& compatible header-only C++26 libs)

for enhanced performance and brevity
N.B. no external platform specific dependencies ↔ portability

● driven/limited by libc++ implementation for WASM compatibility
(N.B. MSVC & gcc’s stdlibc++ are both more advanced)

● embrace modern C++ while avoiding overly bleeding-edges

Great CppCon 2022 talk by Daniela Engert (YouTube, ~1h):
Contemporary C++ in Action

https://youtu.be/yUIFdL3D0Vk

1. Preserve and Grow the existing diverse GR Ecosystem
Not a real concern … end-user Python & C++ top-level block API

non-issues – keep as is:Your Python-User Feedback is appreciated:
given the choice of a possible green-field re-design, do you prefer to have …

a) the same interface as GR 3.X i.e. full access to all nooks and grannies of the full ‘work(wio)’
function?
● possible, but high(er) core lib maintenance costs because of the various corner cases (↔ status quo)

b) the reduced equivalent of the ‘process_one(…)’ and ‘process_bulk(…)’ function?
● reduced ‘attack-surface’ and easier/more flexible core lib maintenance
● getting a better/easier interface for the 90% use case

c) none … e.g. I roll my own Python (pybind11, pypy, …), Java, Rust, etc. bindings
d) other …

Please get in contact with the GR Architecture Team! It’s an Open Design!

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

2. Clean- and Lean Code-Base Redesign
– favour ‘composition’ over ‘inheritance’
– boosts maintainability and adaptability
– preserve tried-and-tested functionalities

3. Performance Optimisations

4. Tag-Based Timing System Integration

5. Advanced Processing Features

6. Broaden Cross-Platform Support

7. User-pluggable Work Scheduler Architecture

8. Overall Project Direction

Meta-View on Software Design and GNU Radio

Software must be adaptable to frequent changes

Meta-View on Software Design and GNU Radio

Software must be adaptable to frequent changes
– few are library developers

– more are application developers, i.e. users of the library

– most are application users

● all need to know ‘what’, ‘when’ and ‘where’ functionalities are implemented
– common terminology – remain mindful about non-RF engineers and applications

● aim: intuitive design before domain-language before documentation of concepts

– common understanding of dependencies and interfaces
● directed flow-graphs are great low-/high-level representations (‘mechanical sympathy’)
● aim for the rest: present C++ STD → C++ Core Guidelines → C++ Best Practices*, …

*e.g. “Make Your API Hard To Use Wrong”, Scott Meyers, IEEE Software, July/August 2004

Meta-View on Software Design and GNU Radio

Δ-Signal

full-range

full-range
1.6 GHz

1.2 GHz
0.8 GHz

0.4 GHz

Software must be adaptable to frequent changes
– mechanical sympathy – why GR flow-graphs resonate well with RF engineers

2. Clean- and Lean Code-Base Redesign
favour ‘composition’ over ‘inheritance’

● low-level library: ‘what’, ‘when’ and ‘where’ functionalities are implemented
– safe, secure and better performance @ IO- and memory latency & bandwidths limits

● only pay for what you use (aka. ‘zero-overhead principle’)

● compile-time type-safety & concepts are overhead free ↔ virtual inheritance & RTTI aren’t

– modern, lean-and-clean support of exchangeability & extendability through 'composition'

→ a) stronger separation-of-concern, transparent & ‘intuitive’ design*

→ b) light-weight, minimal, reduced to strictly-needed API & open for user-extensions

modular library: user can opt-in what to use and what is needed
...free to extend, modify, synthesis new ideas

traditional (prescriptive) frameworks: user implements stubs
 limited options to exchange or to extend

*from a perspective of novice/new users with some RF, signal-processing, computer-science background

https://en.cppreference.com/w/cpp/language/Zero-overhead_principle

2. Clean- and Lean Code-Base Redesign
virtual inheritance vs. strict typing & concepts: https://compiler-explorer.com/z/fe5Khcxfv

https://compiler-explorer.com/z/fe5Khcxfv

2. Clean- and Lean Code-Base Redesign
strict typing & concepts – block implementation as the single source of truth derive

… can be used to generate Python bindings, code & UI documentation, provide UI meta
information, further static reflection options, etc.

template<typename T>
requires (std::is_arithmetic<T>())
struct TestBlock : public node<TestBlock<T>, BlockingIO<true>, TestBlockDoc, SupportedTypes<float, double>,
Doc<R""(
some test doc documentation -- may use mark down, references etc. -- and can be read-out programmatically
// optional future extension:
// use existing input/output port information and constraints for additional documentation
)"">> {
 IN<T> in;
 OUT<T> out;
 A<T, "scaling factor", Visible, Doc<"y = a * x">, Unit<"As">> scaling_factor = static_cast<T>(1);
 A<std::string, "context information", Visible> context;
 // ...
};

Printout example:
fair::graph::setting_test::TestBlock<float>
some test doc documentation -- may use mark down, references etc. -- and can be read-out programmatically
// optional future extension:
// use existing input/output port information and constraints for additional documentation

BlockingIO
i.e. potentially non-deterministic/non-real-time behaviour_

supported data types:0:float 1:double
Parameters:
float scaling_factor - annotated info: scaling factor unit: [As] documentation: y = a * x
std::string context - annotated info: context information unit: [] documentation:
signed int n_samples_max_
float sample_rate_

~~Ports:~~ //[..]

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

2. Clean- and Lean Code-Base Redesign

3. Performance Optimisations
– high-performance, type-strict IO buffers
– zero-overhead for graphs known at compile-time
– out-of-the-box hardware acceleration (SIMD, GPU, etc.)
– optimise linear flow dependency sub-graphs (e.g. avoid/minimise need for buffers)

4. Tag-Based Timing System Integration

5. Advanced Processing Features

6. Broaden Cross-Platform Support

7. User-pluggable Work Scheduler Architecture

8. Overall Project Direction

3. Performance Optimisations
new high-performance, type-strict IO buffers – Possible Use-Cases

Fan-Out: Fan-In/ Aggregate: Multi-Cascade:

● multiple observer

● classic GR flow-graph use

● message passing

● decoupling between user-vs.
real-time worker threads, e.g.

– PMT block property updates
from stream tags & user-thread

● cascaded reader/writer
sharing same buffer
→ minimises copying

● good for blocks that monitor
and rarely modify data

source sink #1

sink #2

sink #N

source #2

sink #1source #1

source #M

source block #1 sink

pass-through

sink #2

sink #N

Important (hopefully positively perceived) changes:
● type-strictness: new circular_buffer can propagate any type

i.e. fundamentals but notably also aggregate types → e.g. DataSet<T>
● simplified async message and sync stream handling (i.e. the same)

3. Performance Optimisations
high-performance, type-strict IO buffers

1 6 11 16 21
4E4

4E5

4E6

4E7

GR4.0 – POSIX GR4.0 – STD

GR3.10 – vmcirc GR3.10 – simple

#reader

[o
p

s/
s]

> 10 x improvement

N.B. test scenario on equal footing
but absolute values could be improved
through better wait/scheduling strategies

main key-ingredients:
● made new circular_buffer<T> lock-free (using atomic CAS paradigm)
● strict typing & constexpr

→ enables better compiler optimisation and L1/L2/L3 cache locality

Performance Optimisations
out-of-the-box ‘Single Instruction, Multiple Data’ (SIMD) acceleration

ins
tru

cti
on

s
data

results

SISDSIMD

https://en.algorithmica.org/hpc/simd/

x1 64-bit double
x2 32-bit float

x2 64-bit double
x4 32-bit float

x4 64-bit double
x8 32-bit float x8 64-bit double

x16 32-bit float

https://en.algorithmica.org/hpc/simd/

Performance Optimisations
out-of-the-box ‘Single Instruction, Multiple Data’ (SIMD) acceleration

SIMD: ‘Single Instruction, Multiple Data’
● utilise all parallelism per CPU core

(N.B. code often utilises only ~10% of the CPU die!!)
● more efficient use of memory bandwidth (and caches)
● reduces latency ↔ real-time systems
● improves efficiency and FLOP/power ratio
● portable & intuitive design of data-parallel blocks
● C++ dev can focus on algorithms/physics
● significant improvements depending on algorithm

Compile-time merging of blocks
● forgo buffers if connection is known at compile-time
● enables compiler to “see” and optimise merged algorithm
● avoids loads & stores less memory/cache required⇒
● avoids synchronisation costs

┌────────────────────────────benchmark:───────────────────────────────┬───cache misses───┬──mean──┬─stddev─┬──max───┬─ops/s─┐
│ merged src→sink │ 1.3k / 3k = 46% │ 626 ns │ 110 ns │ 952 ns │ 16.4G │
│ merged src->copy->sink │ 391 / 971 = 40% │ 957 ns │ 106 ns │ 1 us │ 10.7G │
│ merged src(N=1024)->b1(N≤128)->b2(N=1024)->b3(N=32...128)->sink │ 398 / 960 = 41% │ 957 ns │ 103 ns │ 1 us │ 10.7G │
│ merged src→mult(2.0)→divide(2.0)→add(-1)→sink | 401 / 1k = 40% │ 3 us │ 108 ns │ 4 us │ 3.0G │
│ merged src->(mult(2.0)->div(2.0)->add(-1))^10->sink │ 470 / 1k = 42% │ 41 us │ 189 ns │ 42 us │ 248M │
│ runtime src->sink │ 9k / 174k = 5% │ 42 us │ 98 us │ 336 us │ 241M │
│ runtime src(N=1024)->b1(N≤128)->b2(N=1024)->b3(N=32...128)->sink │ 20k / 648k = 3% │ 125 us │ 328 us │ 1 ms │ 81.7M │
│ runtime src->mult(2.0)->div(2.0)->add(-1)->sink - process_one(..) │ 24k / 663k = 4% │ 105 us │ 259 us │ 882 us │ 97.5M │
│ runtime src->mult(2.0)->div(2.0)->add(-1)->sink - process_bulk(..) │ 24k / 664k = 4% │ 152 us │ 358 us │ 1 ms │ 67.3M │
│ runtime src→(mult(2.0)→div(2.0)→add(-1))^10→sink │ 56k / 686k = 8% │ 127 us │ 28 us │ 198 us │ 80.6M │
└───┴──────────────────┴────────┴────────┴────────┴───────┘

CPU: AMD Ryzen 9 5900X (Zen 3)

Big shout-out to: Dr. Matthias Kretz (GSI/FAIR) & C++ ISO Committee SG6 Numerics Chair
for adopting us/GR and sponsoring the lib <simd> (↔ will be part of C++26)

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

2. Clean- and Lean Code-Base Redesign

3. Performance Optimisations

4. Tag-Based Timing System Integration
(White Rabbit, GPS, SW-based etc.)

5. Advanced Processing Features

6. Broaden Cross-Platform Support

7. User-pluggable Work Scheduler Architecture

8. Overall Project Direction

4. Tag-Based Timing System Integration
synch. data (streams) from different flow-graphs & nodes

● MIMO signals – if possible – are usually synchronised via each RX channel being on the same DAQ system
● not always possible: limited #channel per device (↔costs), largely spacially distributed DAQs (e.g. FAIR: 4.5 km)
● real-world problem: (re-)synchronise physically/spacially distributed sources within the same flow-graph

– failure cases to consider: ‘reconnecting/restarting SDRs/nodes’, ‘no data’ & time-outs, … clock-drifts, transmission delays , ...

nano-sec. timing

m
sg

Digitizer|SDR
|Node #1

m
sg

Digitizer|SDR
|Node #2

m
sg

White-Rabbit|GPS|UDP
Timing Receiver
optional: Node #0

Sync-Block
regular GR

block(s)

DAQ
start

0

0

cases:

A.I
A.II
A.III

B.0

B.I

B.II

B.III
hardware trigger

tags

circular_buffer<T>

circular_buffer<T>

solved through standardised ‘tag_t’s;
TRIGGER_NAME, TRIGGER_TIME,TRIGGER_OFFSET

software
trigger

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

2. Clean- and Lean Code-Base Redesign

3. Performance Optimisations

4. Tag-Based Timing System Integration (White Rabbit, GPS, SW-based etc.)

5. Advanced Processing Features
– transactional and multiplexed settings
– synchronous chunked data processing

(for event-based and transient-recording signals)

6. Broaden Cross-Platform Support

7. User-pluggable Work Scheduler Architecture

8. Overall Project Direction

5. Advanced Processing Features
Setting the scene – Issue with the existing Integration I/II

… open-hardware but not exclusive standard at FAIR:
hundreds of other digitizers supported thanks to GNU Radio

Primary OpenDigitizer Applications:
A) First-line diagnostics
 ↔ “distributed ns-level synchronised
 oscilloscope/SDR/DSA/…”
B) Building blocks for higher-level diagnostics,
 monitoring, and feedback systems
C) Rapid Prototyping: accelerate integration
 of R&D prototype into robust 24h/7 operation

>500 DAQs & post-processing/monitoring feedback services
all sharing the same OpenCMW, GNU Radio, OpenDigitizer, and UI/UX software stack

our ‘Achilles heel’

5. Advanced Processing Features
Setting the scene – Issue with the existing Integration II/II

Three noteworthy things:

I. ns-level signal synchronisation across
300++ front-end controllers (FECs) via
(https://github.com/fair-acc/gr-digitizers)

a) ‘White-Rabbit’ timing receiver

b) GPS pps signals

c) SW-trigger (i.e. UDP multicast)

II. mean + stdev processing

a) … scientific rigour

b) … signal-integrity checks
↔ used in feed-back loops (automatic stop/fail-safe)

III. run-time flow-graph modifications
(https://github.com/fair-acc/gr-flowgraph)

a) block parameters
(e.g. gains, timing-triggered threshold/interlock functions, χ2-fits, conditional
processing, …)

b) online- & user-defined post-processing
(~T&M equipment)

I.

II.

III.

https://github.com/fair-acc/gr-digitizers
https://en.wikipedia.org/wiki/White_Rabbit_Project
https://github.com/fair-acc/gr-flowgraph

5. Advanced Processing Features
transactional and multiplexed settings – FAIR/CERN/… are multi-mission/user platforms

SIS18
SIS100

Unilac

CBM + RIB ext. target (U73+) + AP (LE)

SIS18
SIS100

Unilac

ESR
RIB ext. target (U28+) + ESR

AP + RIB ext. target (U28+) + Biomat

SIS18
SIS100
HESR

Unilac

prepare

in
je

ct
 p

ar
tic

le
s

ramp/
accelerate

ramp-down

timeperiod
with beam

beam processes
P=1 2 P=3 P=5P=4

sequence

extract
particles

beam production chain

● Device/Block Settings Challenges:
– frequent synchronised settings changes (10k+ devices!)
– require dynamic coarse → fine-grained scope
– data transport & signal processing group-delays

 → settings need to be synchronised & multiplexed
 → solution: adaptive timed B+-tree + transactions (see appendix)

5. Advanced Processing Features
synchronous chunked data processing → new DataSet<T>

m
sg src snksnkFFT

transient detector

m
sg

snk DataSet<T>meta-information (t0,fs, axis information,
signal names/units, <ctx>, …)

ctx1 ctx2

CTX [A,B]
- matcher/filter

 <ctx>
snksnk

meta-information
(t0,fs, <ctx>, …)

x N
ctx1,fs,… ctx2

notify buffer
snksnk

 <ctx>

client
subscription-filter

filter
modes:

transient

ctx1 ctx2
transient

DataSet
-ctx1

DataSet
-ctx2

‘multiplexed’

ctx1 ctx2
transient

DataSet
-ctx1

‘multiplexed’
on ctx1-only

ctx1 ctx2
transient

DataSet
transient-ctx1

-Δtpre→0→Δtpost

‘triggered’

ctx1 ctx2
transient

DataSet
non-multiplexed/

continuous

‘continuous’

tag_t+std::vector<T> or Packet<T>
↔ N.B. old PDU concept (obs)

5. Advanced Processing Features
synchronous chunked data processing → new DataSet<T>

m
sg src

snksnk - Err
<ctx>avg<D>

 <ctx>

transient detector
<ctx>

snksnk - OK
<ctx>

<ctx>

M(D)
 <ctx>

D(D)
 <ctx>

snk

snksnk

Sub-DataSet-View

condition

on/off

Σ+

-

for loop

<ctx>

while loop

<ctx>

???

further extensions/generalised graph processing

G(D)
 <ctx>

template<typename T>
struct DataSet {

 std::int64_t timestamp = 0; // UTC timestamp [ns]
 // axis layout:
 std::vector<std::string> axis_names; // e.g. time, frequency, …
 std::vector<std::string> axis_units; // axis base SI-unit
 std::vector<std::vector<T>> axis_values; // explicit axis values

 // signal data layout:
 std::vector<std::int32_t> extents; // extents[dim0_size, dim1_size, …]
 std::variant<layout_right, layout_left, std::string> // row-major, column-major, “special”
 layout;
 // signal data storage:
 std::vector<std::string> signal_names; // size = extents[0]
 std::vector<std::string> signal_units; // size = extents[0]
 std::vector<T> signal_values; // size = \PI_i extents[i]
 std::vector<T> signal_errors; // size = \PI_i extents[i]
 std::vector<std::vector<T>> signal_ranges; // [[min_0, max_0], [min_1, …]

 // meta data
 std::vector<std::map<std::string, pmt::pmtv>> meta_information;
 std::vector<std::map<std::int64_t, pmt::pmtv>> timing_events; // ↔ gr::tag_t
 // [..] constructors, accessors, ...
};

5. Advanced Processing Features
synchronous chunked data processing, three new types: Packet<T> → Tensor<T> → DataSet<T>

Packet
Tensor

// – numeric/measurement based data (e.g. generation of graphs/plotting)

Future Vision/Extension: Inspiration from Unity Control Node …
Basic Scripting of more complex signal flow/processing mechanisms

● https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-control.html

https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-control.html

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

2. Clean- and Lean Code-Base Redesign

3. Performance Optimisations

4. Tag-Based Timing System Integration (White Rabbit, GPS, SW-based etc.)

5. Advanced Processing Features

6. Broaden Cross-Platform Support (including WebAssembly)

7. User-pluggable Work Scheduler Architecture

8. Overall project direction

Store and load custom dashboardsDisplay and modify service and
post processing flow graphs‑

Default dashboard view (editable)

● UI tooling is important for adoption, debugging and as a real world benchmark
→ core component of OpenDigitizer reimplementation.

● Simple to use basic functionality for day to day usage but no limitations for troubleshooting and expert users
● direct access to the processing flowgraphs.
● aim at full compatibility with GNU Radio Companions ‘.grc’ file format

● Images show the current state of the working implementations and are subject to further development.

6. Broaden Cross-Platform Support
emphasis on GCC, Clang & Emscripten (↔ WASM/WebAssembly, UI) Support

Tech Demo:

https://fair-acc.github.io/opendigitizer

https://fair-acc.github.io/opendigitizer/

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

2. Clean- and Lean Code-Base Redesign

3. Performance Optimisations

4. Tag-Based Timing System Integration (White Rabbit, GPS, SW-based etc.)

5. Advanced Processing Features

6. Broaden Cross-Platform Support (including WebAssembly)

7. User-pluggable Work Scheduler Architecture adaptable to
– domain (e.g., CPU, GPU, NET, FPGA, DSP, …)
– scheduling constraints – throughput vs. latency constraints

8. Overall Project Direction

7. User-pluggable Work Scheduler Architecture
Simplified Graph Topology adaptable to domain (e.g., CPU, GPU, NET, FPGA, DSP, …)

sink #7
<CPU>

source #1
<CPU>

sink #3
<CPU>

block #4
<GPU>

sink #N
<GPU>

block #6
<GPU>

sub-flow-graph: e.g. CPU scheduling domain

sub-flow-graph: e.g. GPU scheduling domain

block #2
<CPU>

sink #8
<CPU>

block #5
<CPU>

edge<T>

Buffer<T>Block Port<T>
Port<T>

flow-graph (global scheduler)

CPU

GPU

sink#3:work() → block#2 → block#5 → ...

block#4:work() → block#6 → ...

flow-graph scheduler

scheduler#2

<CPU→
GPU>

<G
PU→

CPU>

● The scheduler interface is responsible for execution of part (or all) of a flowgraph.
Schedulers are assumed to have an input queue and the only public interface is for other
entities (either from the runtime or other schedulers) push a message into the queue that
can represent some action.

● These messages can be:
– Indication that streaming data has been produced on a connected port
– An asynchronous PMT message (indication to run callback)
– Other runtime control (start, stop, kill)

to note:
● description is effectively of an ‘orchestrator’ within a ‘microservice architecture’ (alt)

using a message passing system to synchronising individual service task.
● message-passing has it’s costs and is not the most effective pattern for signal-processing

→ invert the dependency hierarchy and adopt existing scheduler designs to the problem

7. User-pluggable Work Scheduler Architecture
Original Scheduler definition: https://gist.github.com/mormj/9d0b14d6db59ee7f313755c76498cc91

https://en.wikipedia.org/wiki/Orchestration_(computing)
https://en.wikipedia.org/wiki/Microservices
https://microservices.io/
https://gist.github.com/mormj/9d0b14d6db59ee7f313755c76498cc91

● a scheduler' is a process that assigns a task i.e. `block::work()’ function to be
executed an available computing resources (CPU|GPU|...).
A) `work()’ encapsulates impl. specific `work(wio’) function (wio ↔ ports, connection, buffers, …)

B) only non-blocking work functions, and

C) only as many threads as there are available computing resources
● one core can execute only one thread at a time

● avoids unfair/non-deterministic scheduling, context-switching & keeps L1/L2/L3 caches hot ↔ CPU shielding/affinity

● high-level scheduler implementation specific design choices:
‘single global queue’ vs. ‘per-core queues & work stealing`

7. User-pluggable Work Scheduler Architecture
Modified Work Scheduler Paradigm/Proposal building upon that … I/II

push
pop

head/top tail

push
pop

push
pop

push
pop

work “stealing”
either: assign
or: takerun-time/user

global shared queue

resource specific queue

submit()
invoke()
execute()

return periodic tasks

https://en.wikipedia.org/wiki/Scheduling_(computing)

● need to be mindful that we need multiple distinct scheduler for, e.g.
– CPU: default, fair, real-time, O(1), … (e.g. prefer small data chunks ↔ L1/L2/L3 cache & SIMD performance)

– GPU: … (e.g. large chunks crossing CPU-GPU boundary, small for parallelising in-GPU processing ↔ >500 cores)

● scheduling decision needs to be done by scheduling thread (N.B. ‘by block worker’ only as fall-back)

● different scheduling strategies use different prioritisation & graph-based queues

sink #1
<CPU>

source #1
<CPU>

sink #2
<CPU>

block #3
<GPU>

sink #N
<GPU>

block #4
<GPU>

CPU scheduling domain

GPU scheduling domain
some scheduling strategies/choices
● global vs. per-thread/core work-queue
● CPU shielding/thread affinity
● static scheduling
● round-robin vs. prioritised scheduling
- dependent/pre-requisite flow-graphs first
- real-time vs. non-real-time sub-flow-graphs
- data chunk-size based

7. User-pluggable Work Scheduler Architecture
Modified Work Scheduler Paradigm/Proposal building upon that … II/II

7. User-pluggable Work Scheduler Architecture
Some Topologies specific designed to trip-up schedulers 😈😇

exercise:
what is the correct, best, and most efficient execution order?

0. Busy-Looping → naive implementation

1. Depth-first

2. Breadth first

Other possible Algorithms:
https://github.com/fair-acc/graph-prototype/blob/main/include/README.md

● Topological Sort
● Critical Path Method (CPM) → minimizes total completion time
● A* → shortest path
● Wu Algorithm → minimal execution time
● Johnson’s Algorithm → CPM on multiple processor cores
● Program Evaluation and Review Technique (PERT)
● Belman-Ford Algorithm
● Dijkstra's Algorithm → shortest path
● A* → shortest path
● … combinations of the above and many more

Next Step: GNU Radio competition to find the best
‘default’, ‘real-time’, ‘throughput’ optimising scheduler
for the outlined benchmark topologies.

7. User-pluggable Work Scheduler Architecture
Implemented initially only the most basic scheduler strategies to test and verify API

Big shout-out to: Alexander Krimm for fleshing out the first PoC schedulers (pls. buy him a beer)

https://github.com/fair-acc/graph-prototype/blob/main/include/README.md

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

2. Clean- and Lean Code-Base Redesign

3. Performance Optimisations

4. Tag-Based Timing System Integration (White Rabbit, GPS, SW-based etc.)

5. Advanced Processing Features

6. Broaden Cross-Platform Support (including WebAssembly)

7. user-pluggable work scheduler architecture adaptable to

8. Overall Project Direction

9. Overall Project Direction
Main Theme: Powerful CPU Core

● Addressing HPC limitations identified in dev-4.0
● Building upon Josh’s et al. foundation (see his intro)
● Optimising performance and scalability

→ Scheduler User Challenge

● Usability Enhancements:
Classic GNU Radio Look & Accessibility

● Integrating trusted design features of traditional GR
● Simplifying & improving user interface for efficiency
● Expanding accessibility and user-friendly features

Steps for graph-prototype → GR 4.0
https://github.com/fair-acc/graph-prototype

1. C++ GR Framework: establishing a robust and
flexible core foundation, follow-us on:
https://github.com/orgs/fair-acc/projects/5/views/1
https://github.com/fair-acc/opendigitizer/issues/46

2. GRC Integration: aligning functionalities for a
cohesive user interface.

3. Python Integration: Harnessing the capabilities of
Python for extended functionality.

https://github.com/fair-acc/graph-prototype
https://github.com/orgs/fair-acc/projects/5/views/1
https://github.com/fair-acc/opendigitizer/issues/46

9. Overall Project Direction
The next Frontier – FPGA Integration

Need:
● Ensuring agile real-time signal processing capabilities
● Efficiently integrating with low-level RF feedback systems

Challenge:
● Transitioning from semi-static firmware configurations
● Overcoming dependencies on proprietary tool-chains
● Simplifying the deployment process for diverse users

Vision:
● Advancing FPGA capabilities for dynamic adaptability
● Supporting real-time reconfiguration w/o disruptions
● Unified platform for both SW- and HW-processing

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

2. Clean- and Lean Code-Base Redesign

3. Performance Optimisations

4. Tag-Based Timing System Integration

5. Advanced Processing Features

6. Broaden Cross-Platform Support (including WebAssembly)

7. User-pluggable Work Scheduler architecture

8. Overall Project Direction

Thank You!

looking forward to:

4.0

Looking forward to technical dialogue
and building partnerships … Questions?

Appendix

Modernisation Goals
improve performance, industrial integration+deployment

1. Preserve and Grow the existing diverse GR Ecosystem.

– thin Python interface over C++ API

– avoid Python-only implementations (except OOT modules)

– swappable runtime components (both in and out of tree)

– simplified block development: get block developers to "insert code here" without lots of boilerplate or complicated code

2. Clean- and Lean Code-Base Redesign

– favour ‘composition’ over ‘inheritance’

– boosts maintainability and adaptability

– preserve tried-and-tested functionalities

3. Performance Optimisations

– high-performance, type-strict IO buffers

– zero-overhead for graphs known at compile-time

– out-of-the-box hardware acceleration (SIMD, GPU, etc.)

– optimise linear flow dependency sub-graphs (e.g. avoid/minimise need for buffers)

4. Tag-Based Timing System Integration (White Rabbit, GPS, SW-based etc.)

5. Advanced Processing Features

– transactional and multiplexed settings

– synchronous chunked data processing (for event-based and transient-recording signals)

6. Broaden Cross-Platform Support (including WebAssembly)

7. User-pluggable Work Scheduler Architecture adaptable to

– domain (e.g., CPU, GPU, NET, FPGA, DSP, …)

– scheduling constraints (throughput, latency, …)

8. Overall project direction

5. Advanced Processing Features
transactional and multiplexed settings – combine sample-by-sample & chunked signal processing

‘FAIR.SELECTOR.C=<BPCID>:S=<SID>:P=<BPID>:T=<GID>’

Worker (device/property):

Node:

1) TimingCtx X
2) shared_ptr<Setting>
3) atomic<bool> changed ●
4) list<Node> children
5) last access ts
N.B. < 128 bytes
(i.e. cheap to copy)

X :

C 1 = : C 2 = :

C 2 S 1 = : = : C 2 S 2 = : = :

P 1= P 2= P 3=P 3=

NON-MUX :

10

N-M : ●

11 12

N-M :

C 1 = : C 2 = :

C 2 S 1 = : = : C 2 S 2 = : = :

P 1= P 2= P 3=P 3=

C 1 = : C 2 = :

C 2 S 1 = : = : C 2 S 2 = : = :

P 1= ● P 2= ● P 3= ●P 3=

T
3

T
2

T
1

transaction shelve

N-M : ●<Evt#1,trimID1>

N-M : ●<Evt#2,trimID2>

N-M : ●<Evt#3,trimID3>

Tim-RCV
2PC-policy:

keep old
override marked
changed●

 Task A (C-specific & BPCTS)

Setting: BPCTS<

 Task B (P-specific & BPCTS)
Setting: BPCTS<

 Task C (P-specific & P-TS)
Setting: P-TS<

(3) #---- DataSet<T> – Example: 1-dim function

(3) #---- DataSet<T> – Example: N=3 x 1-dim function

(3) #---- DataSet<T> – Example: Image/Matrix/Tensor

