Introductory Tutorial for SDR
and GNU Radio Beginners

GNU Radio Conference 2023
Murat Sever

Outline

About me

About tutorial

GNU Radio

Lab: Digital Signal Processing (DSP)

Lab: Software Defined Radio (SDR)

Lab: Wide Band Frequency Modulation (WBFM)

About me

Part-Time Lecturer at TOBB ETU, Ankara,

Turkey
e ELE361L Course / Telecom Laboratory

o Summer 2021
o Fall 2022
o Fall 2023

Project Owner & Manager
e SDR-Powered Education

™

AR |DZC

AMATEUR RADIO DIGITAL COMMUNICATIONS

About tutorial

e Introduces fundamental DSP concepts and GNU Radio to new users
e Consists of the following lab modules based on Jupyter Notebooks

o Lab DSP
o Lab SDR
o Lab WBFM

e \We will use GNU Radio for

Exploring signals in simulation mode
Sound processing

Spectrum watching with RTL-SDR
Broadcast FM demodulation

o O O O

Get the labs (if you haven't already)

e Labs available @ GitHub
o https://github.com/ARDC-TOBB-ETU/GRCon23Tutorial

Download or clone

& (& @ github.com/ARDC-TOBB-ETU/GRCon23Tutorial

O Product Solutions Open Source Pricing Search or j

B2 ARDC-TOBB-ETU/ GRCon23Tutorial ' Pubic L\ Notifications

<> Code (O Issues I Pullrequests () Actions [Projects (@ Security |~ Insights

¥ main ~ # 1branch © 0tags Go to file About

Introductory Tutorial for SDR and GNU

Local Codespaces % 5
murat-sever updated README Radio Beginners
(3 Clone ® 3
B LabDSP Initial content uploaded [Readme
a8 CCo-1.0 license
I8 LabSDR Initial content uploaded HTTPS GitHub CLI
A~ Activity
B LabwBFM Initial content uploaded https://github.com/ARDC-TOBB-ETU/GRCON23T (] ¢ 0stars
[.gitignore Initial commit ® 1watching
% oforks
[LICENSE Initial commit
m Bovnload ZIP Report repository
[README.md updated README £ uuysugy
[install.sh update installation 3 days ago
Releases
3 requirements.txt added installation files 3 days ago
README.md

GRCon23Tutorial

Introductory Tutorial for SDR and GNU Radio Beginners

Languages

This course consists of many labs and each lab is built on Jupyter Notebook. Jupyter Notebook is chosen to present
information and to guide participant what to do. Jupyter makes the course interactive and we will explore signals @ Jupyter Notebook 1
around in a hands-on fashion. Every notebook contains tasks that participant will attempt.

Use README to install

e Linux/Mac
o Run ./install.sh

e \Windows
o Install miniforge
o Create a new environment
m conda config --append channels conda-forge
m conda create --name GRCon23 --file requirements.txt

Opening Jupyter Notebooks/GNU Radio

e Linux/Mac

O Run source "S{HOME}/conda/etc/profile.d/conda.sh"
o Activate the environment conda activate GRcon23
) Run jupyter-1lab
o Run gnuradio-companion
e \Windows

o Open a miniforge prompt

Activate the environment conda activate GRcon23
o Run jupyter-1ap

o Run gnuradio-companion

Jupyter Notebook

< C @ localhost:8888/lab
: File Edit View Run Kernel Tabs Settings Help
By c % Launcher X | [A] LabDSP.ipynb
Q
./ E] Notebook
. Name - Last Modified
"~ mm LabDSP 6 minutes ago P
* m LabSDR 3 months ago
i LabWBFM 3 months ago
" Python 3
[install.sh 3 days ago (ipykernel)
[LICENSE 3 months ago -
M
¥ README.md 2 days ago Conisole
[requirements.txt 3 days ago
Python 3
(ipykernel)
Other
Terminal Text File
Simple 0 1 &

M
v

Markdown File

A

Python File

=1

Show Contextual
Help

@y O -Update H

Launcher

Outline

About me

About tutorial

GNU Radio (slides from a previous presentation)
Lab: Digital Signal Processing (DSP)

Lab: Software Defined Radio (SDR)

Lab: Wide Band Frequency Modulation (WBFM)

GNU Radio is...

= A signal processing library

= Designed for real-time }GNURadIO
= The software part of an SDR

= Not a radio application

= The tool to build your own transceivers

= FOSS: Free and Open Source Software

GNU Radio

Open-source framework for SDR and signal processing
Founded by Eric Blossom in 2001

Block-based dataflow architecture

Each block runs in its own thread

Data flows through a graph called a Flowgraph
Blocks are nodes in a Flowgraph, and perform
operations and signal processing

Signals normalized between -1.0 and +1.0
Similar in concept to MathWorks SimulinkTM
Running C++ and Python under-the-hood

Can write code directly, or use the GNU Radio
Companion (GRC) graphical tool

Basic Concept: Flow Graph

= Transceivers are implemented as flow graphs
= Similar to Simulink / schematics
= Define structure and parameters of blocks

osmocom Source
Sample Rate (sps): 32k
Cho0: Frequency (Hz): 100M
ChO: Freq. Corr. (ppm): 0
Cho0: DC Offset Mode: Off
Cho: 1Q Balance Mode: Off
Cho0: Gain Mode: Manual
ChO: RF Gain (dB): 10
ChO: IF Gain (dB): 20
Ch0: BB Gain (dB): 20

(|

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0

Multiply

Low Pass Filter
Decimation: 1
Gain: 1
B > Sample Rate: 32k
Cutoff Freq: 10k
Transition Width: 1k

Window: Hamming
Beta: 6.76

o

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 32k

Basic Concept: Block

= Written in C++ or Python
= Implement one logical step

= Each block run in separate thread

osmocom Source
Sample Rate (sps): 480k

ChO: Frequency (Hz): 100M

Cho: Freq. Corr. (ppm): 0 s d"‘:::"‘:i‘;i"’e e File Sink

ChoO: DC Offset Mode: Off Quad ature.Rate' 480K Sample rate: 48k File: tmp/arps.txt
Cho: IQ Balance Mode: Orf [— =l T“ . ;5 : P s Unbuffered: Off

ChO: Gain Mode: Manual A i Haieve: Append file: Overwrite
ChoO: RF Gain (dB): 10 Max Deviation: Sk

ChO: IF Gain (dB): 20
ChO: BB Gain (dB): 20

Data Streams

= Samples are buffered

NBFM Receive

Audio Rate: 48k Afsk1200
Il Quadrature Rate: 480k [— Sample_rate: 48k
Sl Debuglevel: 5

Max Deviation: 5k

= Data types are color-coded

osmocom Source
Sample Rate (sps): 480k
ChoO: Frequency (Hz): 100M

Cho: Freq. Corr. (ppm): 0 i d':'B:": "fi‘;t"’e = File Sink

ChO: DC Offset Mode: Off Mo nate: » : File: tmp/arps.txt
Cho: 1Q Balance Mode: Off [l ——#{ll Quadrature Rate: 480k Sampie _rate: 40k Unbuffered: Off

ChO: Gain Mode: Manual Taus75a Debuglevel: 5 Append file: Overwrite
Cho: RF Gain (dB): 10 Max Deviation: 5k

ChoO: IF Gain (dB): 20
Cho: BB Gain (dB): 20

Color Types

Click on menu item Help->Types

Complex Integer 16

Integer 64

Integer 16

Async Message
Bus Connec tion
wildcard

d

GNU Radio Companion

File Edit View Run Tools

QVEV%%

r

fm_receiver 3 rds_rx 3¢

Options
1D: fm_receiver
Generate Options: QT GUI

Variable
1D: rf_rate
Value: 2.4M

Variable
1D: audio_rate
Value: 48k

Repeat: Yes

Variable
D:

File Source
File: ...g-145M-2M4-aprs.cf32

Sample Rate (sps): 2.4M

ChoO: Frequency (Hz): 145M
Freq. Corr. (ppm): 0O
DC Offset Mode: Automatic
Q Balance Mode: Automatic
Gain Mode: Automatic

Throttle
Sample

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 145M
Bandwidth (Hz): 2.4M

Frequency Xlating FIR Filter
Decimation: 20

Taps: channel_filter

Center Frequency: 755k
Sample Rate: 2.4M

QT GUI Frequency Sink
FFT Size: 1.024k
Spectrum Width: Full
Center Frequency (Hz): ...55M
Bandwidth (Hz): 120k

A Yy
Resampling Rate: 400m
Taps:

Number of Filters: 32
Stop-band Attenuation: 100

Audio Rate: 48k
Quadrature Rate: 48k
Tau: 75u

NBFM Receive

Max Deviation: 5k

Low-pass Filter Taps
1D: channel_filter

Gain: 1

Sample Rate (Hz): 2.4M
Cutoff Freq (Hz): 9k
Transition Width (Hz): 1k

QT GUI Range

ID: freq

Default Value: 145.755M
Start: 143.8M

Window: Hamming
<<< Welcome to GNU Radio
Block paths:

/home/basti/.grc_
/home/basti/usr/|

Loading: "/home/basti]
>>> Done

Loading: "/home/basti.
>>> Done

Companion 3.7.12git-1109-gcbf30e9¢ >>>

ID: Decay ID: Attack
Value: 100m | | Value: 800m
Id

Detectmarkspace
Nacav: 100m

Value
Imports

Variable

Variables

Decay 0.1

frea <Open Properties>

X X X ¢ ¢

X X

X

Block Library

+/ Audio

+ Boolean Operators
+ Byte Operators

+/ Channelizers

+ Channel Models

Coding

+/ Control Port

Debug Tools

+ Deprecated

+ Digital Television
+ Equalizers

+ Error Coding

File Operators
+ Filters

+ Fourier Analysis

GUI Widgets

+ Impairment Models

Instrumentation

+ Level Controllers
+ Math Operators

+/ Measurement Tools
+ Message Tools

+/ Misc

+/ Modulators

Networking Tools
+ OFDM

+ Packet Operators
+) Peak Detectors

+ Resamplers

Stream Operators

s a

Search Blocks

= B 2 =) 11:31aM %

Search for a block by name (and key) ¥ Core

Audio
Boolean Operators

Byte Operators
Channelizers
Channel Models
Coding

Control Port
Debug Tools
Deprecated
Digital Television
Equalizers

Error Coding
FCD

File Operators
Filters

Fourier Analysis
GUI Widgets
Impairment Models

Instrumentation
Level Controllers
Math Operators
Measurement Tools

Message Tools
Micr

[4
b
b
b
b
b
b
[
[4
b
[
b
[4
b
[
[
[4
b
[
[
[4
b
[
[

GUI Output and Instrumentation

BB | Demod @ L+R | Pilot DSBSC RDS & L-R | Constellation @ Waterfall
I m Data 0
)
-_— 4
«Q]
°
i]
= i
'S 50
o]
[}
2]
= |
8 -100
]]
¢ 4
-150
4 0.378 dB, -167.70 dB
T T T T T L T T T T x
-0.400 -0.200 0.000 0.200 0.400
Frequency (MHz)
gain 0 400 |3
freq =, 97000000 |%

Frequency 97.0
TP TA
Clock Time
Radiotext

Station Name WDR 3 Program Type D393 Pl Undefined
Music Stereo AH CMP stPTY
16.09.2016, 07:56 (+2.0h) Alt. Frequencies 96.30MHz
Moderation: Katharina Eickhoff

Ps

Channel

o

N
o

65 I e o ol o B |

IS
o

@
o

-100

Relative Gain (dB)
8

-120

-140

26000
24000
22000
20000

18000

Frame Nr

Baseband Number

Config

m Data O

T
-4.00 -2.00

T
0.00 2.00 4.00

Frequency (kHz)

— temp
| — humidity
—— pressure

140

80 90 100

Node ID

110 120 130 140

J0213574 calibrated

GQRX - a GNU Radio Application

170.620 SOOMHZ 0,000000 MHz | 2

-17 dBFS o
Hardware AGC
-20 LNA gain 24.0 dB

~40 Swap 1/Q No limits
DC remove 1Q balance
-60 Freg. correction 0,0 ppm
-80 | Antenna RX
= »-.u_r\,.’~'-"»wx,ﬁ,,mwl.ww.«wfwn,rw-m-wywr T AN IAA A A N AR A A A APy AN g A
-100

Input contr... Receiver Optio... FFT Settin...

<X =) Audio

Out Of Tree Modules

= GNU Radio can be extended with OOTs
= OOTs cover more specific functionality

= There is a large number available
= CGRAN is our central database

The Comprehensive GNU Radio Archive Network

The Comprehensive GNU Radio Archive Network (CGRAN) is a free
open source repository for 3rd party GNU Radio applications a.k.a
Out Of Tree Modules that are not officially supported by the GNU
Radio project.

Browse~Checkout~Hack

GNU Radio is used by

Commercial
Defense R&D Infosec
Research \ ¢ Research

D
Academic = g—-vooop & <«——p Hardware

Research Vendors
I Professional

Students Service
Hobbyists Providers

GNU Radio is an Ecosystem

= Active Open Source community since 2001
= PyBombs, OOTs

= GRCon since 2011

= GNU Radio Foundation

= FOSDEM SDR DevRoom

= GSoC, SoCIS, R&S Competition, SDR Academy

= GNU Radio Europe

Outline

About me

About tutorial

GNU Radio

Lab: Digital Signal Processing (DSP)

Lab: Software Defined Radio (SDR)

Lab: Wide Band Frequency Modulation (WBFM)

Exploration of Signals in Frequency Domain

lemd|

Signal Source
Sample Rate: 32k
Waveform: Sine
Frequency: 1k
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

Throttle
Sample Rate: 32k

QT GUI Sink
Name:
FFT Size: 1024
Center Frequency (Hz): 0
Bandwidth (Hz): 32k
Update Rate: 10

Sampling

Communication signals are continuous-time
We (ADCs) take samples at regular times
Ts is sampling period

Fs is sampling frequency

s[nT]

o 1] ‘

-
-

—

L l' 3Ts ATs 5T 6T TTs 8Ts

t

Baseband & Bandpass

e Baseband: Information signal
e Bandpass: Communication signal

' baseband signal
|
«/{/

magnitude

f frequency
bandpass signal

magnitude
!

o -
>h

frequency

Nyquist Sampling Theorem

e The Nyquist Sampling Theorem states that a baseband, bandlimited signal
must be sampled at greater than twice the bandwidth present in the signal,
l.e.
o fs>2*fmax
o fs>2%*(f _high-f_low)

Aliasing

e Sampling produces aliases (spectral replicas)
e To prevent aliasing Fs must satisfy Fs > 2 * BW

Aliasing

Nyquist Zones

e Partitions of bandwidth 0.5f s in the frequency domain
e Any signal components present in higher Nyquist Zones are ‘folded’ down into
the 1st Nyquist Zone as a result of aliasing

100Hz 200Hz 300Hz 400Hz 500Hz
A | |
1st . 2nd 3rd l 4th i 5th l
Nyquist | Nyquist | Nyquist | Nyquist | Nyquist |
Zone : Zone : Zone : Zone : Zone :
T T T T T >
0 0.5f, f, 1.5f, 2f

2.5f, frequency

Folded Spectrum View

Spectrum of RF Input Signal Fan-fold Printer Paper
0 Fs/i2 Fs 3Fsf2 2Fs 5Fs/2 3Fs TFs/2
5
2 4 o

1

After sampling,
all out of band
signals and
noise are
folded into the

band between
0 and Fs/2

Examples of aliasing with reference to Nyquist Zones

A

1st 2nd 3rd 4th 5th
juist Nvguis \Nvqui Nyquist Nyquist

| ; .‘ | ‘ .' i >
0 0.5f. f 1.5f 2f 2.5f, frequency

Sampling and Aliasing

Options QT GUI Chooser QT GUI Chooser QT GUI Range

Title: Sampling and Aliasing | ID: waveform ID: samp_rate ID: signal_freq
Output Language: Python | Label: Waveform Label: Sample Rate Label: Signal Frequency
Generate Options: QT GUI | Num Options: 3 Num Options: 3 Default Value: 0

Default option: 102 Default option: 8k Start: -10k

Option 0: 102 Option 0: 8k Stop: 10k

Label 0: Cosine Label 0: 8 kHz Step: 1k

Option 1: 103 Option 1: 16k

Label 1: Square Label 1: 16 kHz

Option 2: 104 Option 2: 32k

Label 2: Triangle Label 2: 32 kHz

QT GUI Time Sink
Name: Waveform
Number of Points: 50
Sample Rate: 8k

Signal Source
Sample Rate: 8k

Waveform: 102 Autoscale: Yes
Frequency: 0 SamThlen:::ltee- 8k

Amplitude: 1 oz :

Offset: 0

QT GUI Frequency Sink
Name: Spectrum

FFT Size: 1024

Center Frequency (Hz): 0
' bw | Bandwidth (Hz): 8k

Initial Phase (Radians): 0

Digital Filters

e Afilter modifies the frequency contents of an input signal

e Types

o LPF
HPFE 0dB 0dB

O
o BPF
o Notch

gain
gain

; >
0 frequency fI2 0 frequency f/2

(a) lowpass (b) highpass

0dB 0dB +

gain
gain

~p n
0 frequency f/2 0 frequency f12

(c) bandpass (d) bandstop

Filters Using GNU Radio

Options
Title: Basic Filter Examples
Author: Ettus Research
Description: Examp... filters
Output Language: Python
Generate Options: QT GUI

Variable
1D: samp_rate
Value: 1M

[cmd| Frequency: 300k

Signal Source
Sample Rate: 1M
Waveform: Cosine

Amplitude: 700m
Offset: 0
Initial Phase (Radians): 0

Noise Source
Noise Type: Gaussian
Amplitude: 100m

QT GUI Range

Default Value: 100m

Sample Rate: 1M

Complex To Float

QT GUI Range
1D: high_cutoff
Label: High Cutoff
Default Value: 200k
Start: 0
Stop: 500k
Step: 1

QT GUI Range
1D: transition
Label: Transition
Default Value: 50k
Start: 1k
Stop: 100k
Step: 1

Start: 0

Stop: 1

Step: 100m QT GUI Range
1D: low_cutoff
Label: Low Cutoff

QT GUI Range Default Value: 100k

1D: sine_freq Start: 0

Label: Sine Frequency Stop: 500k

Default Value: 300k Step: 1

Start: 0

Stop: IM

Step: 1k

Low Pass Filter
Decimation: 1
Gain: 1
Sample Rate: 1M
Cutoff Freq: 200k
Transition Width: 50k
‘Window: Hamming
Beta: 6.76

High Pass Filter
Interpolation: 1
Gain: 1
Sample Rate: 1M
Cutoff Freq: 100k
Transition Width: 50k
Window: Hamming
Beta: 6.76

Joutt

[in)

Band Pass Filter
Interpolation: 1
Gain: 1
Sample Rate: 1M
Low Cutoff Freq: 100k
High Cutoff Freq: 200k
Transition Width: 50k
Window: Hamming
Beta: 6.76

joutt

Band Reject Filter
Interpolation: 1
Gain: 1
Sample Rate: 1M
Low Cutoff Freq: 100k
High Cutoff Freq: 200k
Transition Width: 50k
Window: Hamming
Bata: 676

foutl

[freq|
[bw |

QT GUI Frequency Sink
Name: Spectrum

FFT Size: 1024

Center Frequency (Hz): 0
Bandwidth (Hz): 1M

Multirate Signal Processing

e Multirate operations are required to change the sampling rate in a DSP
system to optimise computational efficiency

e Some example scenarios

To match the sampling rates of two signal paths that will be combined

To adjust the sampling rate closer to Nyquist when the signal bandwidth changes
To match the sampling rate of an external interface, such as a DAC

To ease analogue anti-alias or image-rejection filter requirements

o O O O

Decimation

e Reducing the sample rate by an integer factor
e Retain every Prth sample and discard the remaining samples
e The new slower sample rate is 1/P of the original faster sample rate

s[n]

99990 -9-0 o
v " T2799099909?
0 3 6 9 12 15 18 n
S[n p[n].___-.—_.._.____

Decimation

e Decimation involves two processes:

o anti-alias low pass filtering, followed by
o downsampling

f flg,v' = f /M

\ b ‘ W —>

low pass filter downsampler

Decimator

Interpolation

e Increasing the sample rate by an integer factor
e Insert P — 1 zeros between the original input samples and interpolate
e The new faster sample rate is P times the original slower sample rate

0 1 2 3 4 5 6 L
0 3 6 9 12 15 18 m,
sp[m]

3 6 9

sasandfsiadaddasastal

Interpolation

e An interpolator is composed of

o an upsampling operation, followed by
o alow pass image rejection filter

f,= LI

— ()R _

upsampler low pass filter

Interpolator

Other Multirate Operations

e There are other types of operation to be aware of, beyond simple decimation
and interpolation by integer factors

e Resampling a signal by a rational fraction
o If the sampling rate is to be changed by the ratio of two integers, e.g. a rate change from 100
MHz to 150 MHz could be expressed as R = 3/ 2 . Rational fractional rate changes can be
achieved using a cascade of an interpolator and decimator, e.g. L =3 and M = 2 in this
example. The resulting structure can be optimised using polyphase methods.

e Resampling a signal by an irrational fraction, or by a factor that changes
over time

o Where there is no convenient integer-based expression for the resampling ratio, or where it is
dynamic, a different type of approach is required. Popular methods include highly
oversampled polyphase filters, and Farrow structures.

Frequency Xlating FIR Filter

Frequency Xlating FIR Filter is a
block that:

(@)

(@)

performs frequency translation on the
signal,

downsamples the signal by running a
decimating FIR filter on it.

It can be used as a channelizer:

(@)

it can select a narrow bandwidth
channel from the wideband receiver
input.

N|a

frequency translation

anti-aliasing filter

Suppose this is the
stations in FM radio
example!

Our aim is to select
only one channel

Frequency Xlating FIR Filter

e [f you have Real taps, then your FIR filter
will be symmetric in the frequency domain.

firdes.low pass(l,samp rate,samp rate/ (2*deci

mation), transition bw)

o
o
NlUTh- —

e If you have Complex taps, then your FIR
filter will not have to be symmetric in the
frequency domain.

firdes.complex band pass(l, samp rate,

-samp_rate/ (2*decimation),
samp_rate/(Z*decimation), transition bw)

5 0 fs
2 2
| / IV \

s 0 fs
2 2

Frequency Xlating FIR Filter

e Decimation: the integer ratio between the
input and the output signal’'s sampling
rate.

e Example:
o Input sample rate = 240000
o Decimation factor = 5
o Output sample rate = 240000 + 5 = 48000

Center frequency: the frequency
translation offset frequency.

In practice, it is the frequency offset of the
signal if interest to be selected from the
input.

Receiver center:
145000000 Hz

Channel center:

145004000 Hz

Signal offset:
4000 Hz

Frequency Xlating FIR Filter

Options
Title: Frequenc...FIR Example
Author: Ettus Research
Description: Examp...R Filter
Output Language: Python
Generate Options: QT GUI

Variable
ID: samp _rate
Value: 1M

Signal Source
Sample Rate: 1M
Waveform: Cosine
Frequency: 300k
Amplitude: 700m
Offset: 0
Initial Phase (Radians): 0

Noise Source
Noise Type: Gaussian
Amplitude: 100m

Seed: 0

QT GUI Range
ID: noise_amp
Label: Noise
Default Value: 100m
Start: 0
Stop: 1
Step: 100m

QT GUI Range
ID: sine_freq
Label: Sine Freguency
Default Value: 300k

QT GUI Range
ID: xlate _freq
Label: Xlate Frequency
Default Value: 300k

Start: 0 Start: -500k
Stop: 1M Stop: 500k
Step: 1k Step: 1

QT GUI Range
ID: xlate_bw
Label: Xlate Bandwidth
Default Value: 10k
Start: 0
Stop: 50k
Step: 1

Variable
ID: bb_rate
Value: 50k

Variable
ID: taps
Value: firdes.low_pass(1.0...

Variable
ID: decimation

Throttle
Sample Rate: 1M

QT GUI Frequency Sink
Name: Spectrum

FFT Size: 1024 |freal
Center Frequency (Hz): 0
Bandwidth (Hz): 1M

Frequency Xlating FIR Filter
Decimation: 20

Taps: taps -
Center Frequency: 300k
Sample Rate: 1M

-
>

Value: 20

QT GUI Frequency Sink
Name: Baseband
freq| FFT Size: 1024
Center Frequency (Hz): 0
_bw | Bandwidth (Hz): 50k

LabDSP.ipynb

<
:

]
o

C @ localhost:8888/lab/tree/LabDSP/LabDSP.ipynb

File Edit View Run

Kemel Tabs

(¢} 2 Launcher

| Filter fil

Q

B8 / LabDSP /

Name -

BandPassPropertie...

M CaptureStereoTon...
FilterLengths.png

[lab_dsp_noise_ba...
lab_dsp_noise_ba...
[lab_dsp_tone_deci...
M lab_dsp_tone_deci...
[lab_dsp_tone_deci...
| lab_dsp_tone_deci...
[lab_dsp_tone_deci...
lab_dsp_tone_deci...
[lab_dsp_tone_ster...

Last Modified
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago

4 months ago

« W] LabDSP.ipynb 24 minutes ago

M pentek_folded_spe...

soundcontrol.png

Simple

[N

4 months ago

4 months ago

Python 3 (ipykernel) | Idle

Settings Help

B+ X

@< w o@D

X [A LabDSP.ipynb X |+ L
D » = Cc » # Python 3 (ipykernel) O

Markdown v

5
LabDSP: Hands-on DSP using GNU Radio and Sound
Card 1

GNU Radio

GNU Radio is software radio toolkit that is free and open-source (FOSS). It has many DSP blocks which are mostly
written in C++. You can also write blocks in Python though their execution will be slower. GNU Radio also has a
built-in scheduler to provide blocks with data thay need. Data flow is handled by scheduler. Each block has a
specific function.

GNU Radio has no GUI but it comes with an application called GNURadio Companion (GRC) so you can add and
connect blocks together to build what is called a flowgraph. You can find a block by searching from available
blocks. After you find your block you can add blocks either by double clicking on it or dragging and dropping it onto
the surface of GRC. You can also connect blocks in a Python scrit if you wish. Actually this is what GRC does! It
generates a script file to do all connections and start the flowgraph. Every flowgraph starts with a source block and
terminates with a sink block.

Task1: Characterizing a real bandpass filter

Below is the first flowgraph we will create. In this example we will examine filter characteristics of a bandpass filter.
Filters are fundamental building blocks of DSP. Our flowgraph has one source and two sink blocks. We feed the

Mode: Command & Ln1,Coll LabDSP.ipynb

Outline

About me

About tutorial

GNU Radio

Lab: Digital Signal Processing (DSP)

Lab: Software Defined Radio (SDR)

Lab: Wide Band Frequency Modulation (WBFM)

What is Software Defined Radio (SDR)?

“A radio in which aspects of functionality are implemented in, or controlled by,
software.”

e Flexible functionality
o the operation of a radio can be changed without making any physical alterations to the device

e Algorithms from DSP and communications theory running as real-time
software on a CPU, GPU and/or FPGA
e Joe Mitola first coined the term in 1991

Why SDR?

e Traditional radios are hard-wired to specific frequency bands and

communication protocols
o Fixed-function, Black Box
o Can’t be easily modified, can’t easily access internal values and states

e SDR provides:
o Flexibility
o Upgradability
o Reconfigurability
o Lower Cost

Key SDR Parameters (Features)

* Frequency (Tuning) Range

* Instantanous Bandwidth

* Bit resolution

* Interface (USB, Ethernet, PCle)

* Rx/Tx, half-duplex, full-duplex, MIMO
* Preselectors

« Budget: 50%-...k$

RTL-SDR

® “| smell a very cheap poor man’s SDR here ©”
® Cheap man’s radio since 2012

® Hams, DIY, hackers, makers, students,...

® Demodulator
USB interface

® Named by RTL2832U chip, DVB-T

* Tuner

® R820T: 24-1766MHz

® E4000: 52-2200MHz

013 / R820T

RTL-SDR

* Receive-only

* 8-bit ADC

« 24MHz-1.75GHz (depends on tuner chip)
« 2.4MSPS BW (stable) upto 3.2M

« “HamltUp” upconverter

® HF coverage

RTL-SDR Driver Installation#1 - Windows

e Plug in your dongle

e Right click zadig.exe file and select "Run as administrator”.

e In Zadig, go to "Options->List All Devices" and make sure this option is
checked. If you are using Windows 10 or 11, in some cases you may need to
also uncheck "Ignore Hubs or Composite Parents".

(4 Zadig =
Device [Options | Help

v List All Devices

Printe v/ Ignore Hubs or Composite Parents v] [Edit
v Create a Catalog File

Driver : 222 = More Information
v Sign Catalog & Install Autogenerated Certificate v WinUS8 (ibusb)

USB II Advanced Mode libusb-win32

libusbK
WinUSB (Microsoft)

WCID Log Verbosity 4

9 devices found.

RTL-SDR Driver Installation#2 - Windows

e Select "Bulk-In, Interface (Interface 0)" from the drop down list. Make sure it is
Interface 0 (ZERO), and not "1".

£ Zadig = & =
Device Options Help
|Bulk-In, Interface (Interface 0) v | [Edit
Driver ~ (NONE) m) WinUSB (v6.1.7600.16385) = More Information
: WinUSB (libusb)
USBID O0BDA 2838 00| libusb-win32
e Replace Driver v libusbK
wem = X b WinUSB (Microsoft)
11 devices found.

RTL-SDR Driver Installation - Linux

e Linux users may blacklist RTL so that default DVB-T driver is not loaded when

dongle is plugged in.
o # cd /etc/modprobe.d/
sudo gedit blacklist-rtl.conf
append: blacklist dvb_usb_rtl28xxu
OR
echo "blacklist dvb_usb_rtI28xxu" >> /etc/modprobe.d/blacklist.conf

o O O O

LabSDR.ipynb

Ol

o =

»

C @ localhost:8888/lab/tree/LabSDR/LabSDRipynb Q@ < & O
File Edit View Run Kernel Tabs Settings Help
* (¢] 7 Launcher X | [A LabDSP.ipynb X | [A LabSDR.ipynb X |+ %
B+ XDO M » = ¢ » Markdown v # Python 3 (ipykernel) O
Filter files by name ‘ ”
&
B8 / LabSDR /)) .
_ - LabSDR: Introduction to Software Defined Radio
Name - Last Modified
«» W] LabSDR.ipynb 3 months ago (S D R)
What is an SDR?
Software Defined Radio (SDR) is a radio communication system where components that have been traditionally
implemented in hardware (e.g. mixers, filters, amplifiers, modulators/demodulators, detectors, etc.) are instead
implemented by means of software on a personal computer or embedded system wikipedia. Computation platform
can be anything from general purpose CPUs to FPGAs, from GPUs to DSP chips.
With SDR one can access some part of electromagnetic spectrum, monitor, capture, demodulate it. Width of the RF
signal depends on the capability of RF front-end. Another important factor is resolution.
SDR has been an important tool in education, industry for years. It will provide us over-the-air signals easily so that
we can make sure our DSP algorithms behave the same as they do in the simulation.
In this lab we will learn about our SDR hardware and look into SDR tools giving us access to electromagnetic
spectrum.
Previously in DSP lab we have only used our PC with sound-card to implement some basic DSP functionalities. &
Simple 0 2 {8 Python 3 (ipykernel) | Idle Mode: Command & Ln1,Coll LabSDR.ipynb

Outline

About me

About tutorial

GNU Radio

Lab: Digital Signal Processing (DSP)

Lab: Software Defined Radio (SDR)

Lab: Wide Band Frequency Modulation (WBFM)

Frequency Modulation (FM)

Information signal is a baseband signal;
a sum of sinusoids

Magnitude
'

Amplitude

INFORMATION
SIGNAL

>

Frequency (kHz)

S

When there is no control input, the signal output

=

Frequency (kHz)

14
w
o 2 by the VCO is a pure cosinusoid o
> 24 K
g S ¢ =
ER 5
3" 3 :
>

This complicated FM signal has numerous sideband
components and will be discussed in Section 9.3!

>

Frequency (kHz)

FM
SIGNAL
Magnitude

Amplitude

FM Radio Multiplex

e Itis common practice to multiplex multiple information signals together before

performing modulation, as this allows for multi-channel transmission using
one carrier.

X) 10% 22.5% 22.5% 2.6% 2.6% Modulation Levels
2 3 Pilot

=2 £ e Stereo [L-R]

= 0O 5 -

v s

53 57
Frequency (kHz)

Broadcast FM (WBFM)

S (D X RDS @ 57kHz

BPSK Modulated
RDS Bitstream

Sl(l)

Left Audio
Channel

+ [L+R] @ Bband

[57kHz

Freq Tripler

v

Sjﬁn mp: ()

=3 FM MPX Information
Signal (to modulator)

Freq Doubler

19kHz

38kHz

[L-R]
s (1) -+ X [L-R] @ 38kHz
Right Audio == ~

Channel

LabWBFM.ipynb

C O localhost:8888/labjtree/LabWBFM/LabWBFM.ipynb

<

~

]
o

Simple

File Edit View Run

Kernel Tabs

(¢] 2 Launcher

y nam

B / LabWBFM /

Name -

[capture.wav

[lab_wbfm_multi_ch...

[lab_wbfm_single_c...
« W] LabWBFM.ipynb

[otherl.wav

[other2.wav

[other3.wav

[otherd.wav

[rtl_capture.dat

O rtl_wbfm.dat

[wbfm_mono.wav

o3 @

Last Modified
4 months ago
4 months ago

4 months ago

3 months ago

3 months ago
3 months ago
3 months ago
4 months ago
4 months ago

3 months ago

Python 3 (ipykernel) | Idle

Settings Help

B + X

Q < « O% -updatei

X [® LabDSP.ipynb
O » mC »

X | [A] LabSDR.ipynb X [A LabwBFM.ipynb

Markdown v # Python 3 (ipykernel) O

X |+
k-

&
LabWBFM: Wideband Frequency Modulation
(WBFM)

Commercial FM broadcast band extends from 88MHz to 108MHz, totaling 20MHz of spectrum. A slot of 200kHz
bandwidth is given to each station. Thus, there exist 100 stations at most. 200kHz bandwidth is huge when
compared to NBFM where bandwidth is around 5kHz. There will be also more than one component in this

bandwidth as we'll see. So, wideband term comes from these facts.

Example WBFM Walkthrough

Consider example record given in your repo, rtl_wbfm.dat . This file has been recorded using RTL-SDR set to
94.1MHz at a rate of 2.048Msps, ie 2048000 samples per second.

import os

file _name = 'rtl wbfm.dat’

number_of samples = os.path.getsize(file_name) / 2

print("Record contains " + str(int(number_of_samples)) + " complex samples and this correspond

»

Record contains 20480000 complex samples and this corresponds to 10.0 seconds data.

We will use the same Python function to read IQ file recorded by RTL-SDR.

def RTLSDRLoadRecord(file name):

imnort _numov_as _nn b

Mode: Command & Ln1,Coll LabWBFM.ipynb

Thanks!

murat-sever@live.com

