Introductory Tutorial for SDR and GNU Radio Beginners

GNU Radio Conference 2023 Murat Sever

Outline

- About me
- About tutorial
- GNU Radio
- Lab: Digital Signal Processing (DSP)
- Lab: Software Defined Radio (SDR)
- Lab: Wide Band Frequency Modulation (WBFM)

About me

Part-Time Lecturer at TOBB ETU, Ankara, Turkey

- ELE361L Course / Telecom Laboratory
 - Summer 2021
 - Fall 2022
 - Fall 2023

Project Owner & Manager

• SDR-Powered Education

About tutorial

- Introduces fundamental DSP concepts and GNU Radio to new users
- Consists of the following lab modules based on Jupyter Notebooks
 - Lab DSP
 - Lab SDR
 - Lab WBFM
- We will use GNU Radio for
 - Exploring signals in simulation mode
 - Sound processing
 - Spectrum watching with RTL-SDR
 - Broadcast FM demodulation

Get the labs (if you haven't already)

- Labs available @ GitHub
 - https://github.com/ARDC-TOBB-ETU/GRCon23Tutorial

÷	\rightarrow	C 🔒 github.com	년 < ☆ 🛛 🦃 Upda
0		Q ARDC-TOBB-ETU	0
	(Q ARDC-TOBB-ETU	Search all of GitHub
2.2		Search syntax tips	
		Let's build from here	
		The Al-powered developer platform to build, scale, and deliver secure software.	lan ora an Tain A

Download or clone

around in a hands-on fashion. Every notebook contains tasks that participant will attempt.

• Jupyter Notebook 100.0%

Use README to install

- Linux/Mac
 - Run ./install.sh
- Windows
 - Install miniforge
 - Create a new environment
 - conda config --append channels conda-forge
 - conda create --name GRCon23 --file requirements.txt

Opening Jupyter Notebooks/GNU Radio

• Linux/Mac

- $\circ \quad Run \text{ source "${HOME}/conda/etc/profile.d/conda.sh"}$
- Activate the environment conda activate GRCon23
- Run jupyter-lab
- \circ Run gnuradio-companion

• Windows

- Open a miniforge prompt
- Activate the environment conda activate GRCon23
- Run jupyter-lab
- Run gnuradio-companion

Jupyter Notebook

Outline

- About me
- About tutorial
- GNU Radio (slides from a previous presentation)
- Lab: Digital Signal Processing (DSP)
- Lab: Software Defined Radio (SDR)
- Lab: Wide Band Frequency Modulation (WBFM)

GNU Radio is...

- A signal processing library
- Designed for real-time
- The software part of an SDR
- Not a radio application
- The tool to build your own transceivers
- FOSS: Free and Open Source Software

GNU Radio

- Open-source framework for SDR and signal processing
- Founded by Eric Blossom in 2001
- Block-based dataflow architecture
- Each block runs in its own thread
- Data flows through a graph called a Flowgraph
 Blocks are nodes in a Flowgraph, and perform operations and signal processing
 Signals normalized between -1.0 and +1.0
- Similar in concept to MathWorks SimulinkTM
- Running C++ and Python under-the-hood
 Can write code directly, or use the GNU Radio Companion (GRC) graphical tool

Basic Concept: Flow Graph

- Transceivers are implemented as *flow graphs*
- Similar to Simulink / schematics
- Define structure and parameters of blocks

Basic Concept: Block

- Written in C++ or Python
- Implement one logical step
- Each block run in separate thread

Data Streams

Samples are buffered

Data types are color-coded

Color Types

Click on menu item Help->Types

GNU Radio Companion

Search Blocks

	🤶 🖪 🖇 📧 🜒 11:31 AM 🔱
▶ ⊗ I < > I ⊲I ⊴I ⋈ III Q C S	
Search for a block by name (and ke	y) 🔻 Core
	► Audio
	Boolean Operators
	Byte Operators
	Channelizers
	Channel Models
	▶ Coding
	Control Port
	Debug Tools
	Deprecated
	Digital Television
	Equalizers
	Error Coding
	► FCD
	▶ File Operators
	▶ Filters
	Fourier Analysis
	▶ GUI Widgets
	Impairment Models
	Instrumentation
	Level Controllers
	Math Operators
	Measurement Tools
	Message Tools
	► Misc

GUI Output and Instrumentation

GQRX - a GNU Radio Application

Out Of Tree Modules

- GNU Radio can be extended with OOTs
- OOTs cover more specific functionality
- There is a large number available
- CGRAN is our central database

GNU Radio is used by

GNU Radio is an Ecosystem

- Active Open Source community since 2001
- PyBombs, OOTs
- GRCon since 2011
- GNU Radio Foundation
- FOSDEM SDR DevRoom
- GSoC, SoCIS, R&S Competition, SDR Academy
- GNU Radio Europe

Outline

- About me
- About tutorial
- GNU Radio
- Lab: Digital Signal Processing (DSP)
- Lab: Software Defined Radio (SDR)
- Lab: Wide Band Frequency Modulation (WBFM)

Exploration of Signals in Frequency Domain

Sampling

- Communication signals are continuous-time
- We (ADCs) take samples at regular times
- Ts is sampling period
- Fs is sampling frequency

Baseband & Bandpass

- Baseband: Information signal
- Bandpass: Communication signal

Nyquist Sampling Theorem

- The Nyquist Sampling Theorem states that a baseband, bandlimited signal must be sampled at greater than twice the bandwidth present in the signal, i.e.
 - fs > 2 * fmax
 - fs > 2 * (f_high f_low)

Aliasing

- Sampling produces aliases (spectral replicas)
- To prevent aliasing Fs must satisfy Fs > 2 * BW

Nyquist Zones

- Partitions of bandwidth 0.5f s in the frequency domain
- Any signal components present in higher Nyquist Zones are 'folded' down into the 1st Nyquist Zone as a result of aliasing

Folded Spectrum View

Examples of aliasing with reference to Nyquist Zones

Sampling and Aliasing

Options	QT GUI Chooser	QT G
Title: Sampling and Aliasing	ID: waveform	ID: sa
Output Language: Python	Label: Waveform	Label
Generate Options: QT GUI	Num Options: 3	Num
	Default option: 102	Defau
	Option 0: 102	Optio
	Label 0: Cosine	Label
	Option 1: 103	Optio
	Label 1: Square	Label
	Option 2: 104	Optio
	Label 2: Triangle	Label

QT GUI Chooser ID: samp_rate Label: Sample Rate Num Options: 3 Default option: 8k Option 0: 8k Label 0: 8 kHz Option 1: 16k Label 1: 16 kHz Option 2: 32k Label 2: 32 kHz

QT GUI Range ID: signal_freq Label: Signal Frequency Default Value: 0 Start: -10k Stop: 10k Step: 1k

Digital Filters

- A filter modifies the frequency contents of an input signal
- Types
 - LPF
 - HPF
 - BPF
 - Notch

Filters Using GNU Radio

Multirate Signal Processing

- Multirate operations are required to change the sampling rate in a DSP system to optimise computational efficiency
- Some example scenarios
 - To match the sampling rates of two signal paths that will be combined
 - To adjust the sampling rate closer to Nyquist when the signal bandwidth changes
 - To match the sampling rate of an external interface, such as a DAC
 - To ease analogue anti-alias or image-rejection filter requirements

Decimation

- Reducing the sample rate by an integer factor
- Retain every *Pth* sample and discard the remaining samples

Decimation

- Decimation involves two processes:
 - anti-alias low pass filtering, followed by
 - \circ downsampling

Interpolation

- Increasing the sample rate by an integer factor
- Insert *P* 1 zeros between the original input samples and interpolate
- The new faster sample rate is *P* times the original slower sample rate

Interpolation

- An interpolator is composed of
 - \circ an upsampling operation, followed by
 - \circ a low pass image rejection filter

Other Multirate Operations

- There are other types of operation to be aware of, beyond simple decimation and interpolation by integer factors
- Resampling a signal by a **rational fraction**
 - If the sampling rate is to be changed by the ratio of two integers, e.g. a rate change from 100 MHz to 150 MHz could be expressed as R = 3 / 2. Rational fractional rate changes can be achieved using a **cascade** of an interpolator and decimator, e.g. L = 3 and M = 2 in this example. The resulting structure can be optimised using polyphase methods.
- Resampling a signal by an **irrational fraction**, or by a factor that changes over time
 - Where there is no convenient integer-based expression for the resampling ratio, or where it is dynamic, a different type of approach is required. Popular methods include highly oversampled polyphase filters, and Farrow structures.

- Frequency Xlating FIR Filter is a block that:
 - performs <u>frequency translation</u> on the signal,
 - <u>downsamples</u> the signal by running a <u>decimating FIR filter</u> on it.
- It can be used as a **channelizer**:
 - it can select a narrow bandwidth channel from the wideband receiver input.

Suppose this is the stations in FM radio example!

Our aim is to select only one channel

• If you have Real taps, then your FIR filter will be symmetric in the frequency domain.

firdes.low_pass(1,samp_rate,samp_rate/(2*deci
mation), transition_bw)

firdes.complex_band_pass(1, samp_rate, -samp_rate/(2*decimation), samp_rate/(2*decimation), transition_bw)

- **Decimation**: the integer ratio between the input and the output signal's sampling rate.
- Example:
 - Input sample rate = 240000
 - Decimation factor = 5
 - Output sample rate = 240000 ÷ 5 = 48000

- <u>Center frequency</u>: the frequency translation offset frequency.
- In practice, it is the frequency offset of the signal if interest to be selected from the input.

÷	→ C	() local	host:8888/	lab/tree,	/LabDSP/La	bDSP.ipynb																	Update :
0	File	Edit	View	Run	Kerne	Tabs	Settin	ngs H	Help														
		+		±	C			🛛 Li	auncher		×		Labl	DSP.ipynb		× +							°o
	E	ilter files	by nan	ne			Q	8	+ %	6 8	•	C	**	Markdown	~						ĕ	Python 3 (ipykerne	el) ()
0		/ LabDS	DSP /					1		Lab			-			Duci				dia a		Cound	Ŭ
:=	Nar	me		•		Last Mod	ified			Lapi	125	. Ha	a	lus-on	05	Pusi	ng c		Ra	ulo al	lu	Sound	11
		BandPa	ssPrope	ertie		4 months	ago			Cart	I												
	CaptureStereoTon				4 months ago 4 months ago												- 11						
							ago			GNU	GNU Radio												
	B	lab_dsp	noise	ba	4 months ago		ago					-											
		lab_dsp	_noise_	ba		4 months ago				GNU Ra	GNU Radio is software radio toolkit that is free and open-source (FOSS). It has many DSP blocks which are					which are mostly							
Lab_dsp_tone_deci 4 months ago written in C++. You can also write blocks in Python though their exe								execution will be slower. GNU Radio also has a															
		lab_dsp	_tone_d	leci		4 months ago built-in scheduler to provide blocks w							vide blocks with data thay need. Data flow is handled by scheduler. Each block has a										
	ß	lab_dsp	_tone_d	leci	4 months ago		ago			specific f	pecific function.												
A months ago GNU Padio has no GUU but it comes with an application called GNU								URadio Companion (GRC) so you can add and															
	B	lab dsp tone deci 4 months ago connect blocks together to build what is called a flowgraph You can find a block by searching from								m available													
R lab dsp tone deci 4 months ago blocks. After you find your block you can add blocks either by double clicking on it or dragging and								d dropping it onto															
	B	lab dsp	tone s	ter		4 months ago				the surfa	the surface of GRC. You can also connect blocks in a Python scrit if you wish. Actually this is what (GRC does! It						
	•	LabDSF	.ipynb		24 minutes ago		ago			generate	generates a script file to do all connections and start the flowgraph. Every flowgraph starts with a source block							source block and	nd				
pentek_folded_spe 4 months ago terminates with a sink block.																							
		soundco	ontrol.pr	g		4 months	ago																
									Task1: Characterizing a real bandpass filter														
										Below is Filters ar	the first f e fundan	lowgra nental l	aph y build	we will create. Iding blocks of I	In this DSP. C	example v Dur flowgra	we will e aph has i	examine one sou	filter chai irce and t	racteristics wo sink blo	s of a ocks	a bandpass filter. . We feed the	
	Simple		0 s	1	⊕ Py	thon 3 (ip	ykerne	l) Idle											Mode: C	command	\otimes	Ln 1, Col 1 Lat	DSP.ipynb

Outline

- About me
- About tutorial
- GNU Radio
- Lab: Digital Signal Processing (DSP)
- Lab: Software Defined Radio (SDR)
- Lab: Wide Band Frequency Modulation (WBFM)

What is Software Defined Radio (SDR)?

"A radio in which aspects of functionality are implemented in, or controlled by, software."

- Flexible functionality
 - the operation of a radio can be changed without making any physical alterations to the device
- Algorithms from DSP and communications theory running as real-time software on a CPU, GPU and/or FPGA
- Joe Mitola first coined the term in 1991

Why SDR?

- Traditional radios are hard-wired to specific frequency bands and communication protocols
 - Fixed-function, Black Box
 - Can't be easily modified, can't easily access internal values and states
- SDR provides:
 - Flexibility
 - Upgradability
 - Reconfigurability
 - Lower Cost

Key SDR Parameters (Features)

- Frequency (Tuning) Range
- Instantanous Bandwidth
- Bit resolution
- Interface (USB, Ethernet, PCIe)
- Rx/Tx, half-duplex, full-duplex, MIMO
- Preselectors
- Budget: 50\$-...k\$

RTL-SDR

- "I smell a very cheap poor man's SDR here © "
- Cheap man's radio since 2012
- Hams, DIY, hackers, makers, students,...
- Demodulator
 - Named by RTL2832U chip, DVB-T
- Tuner
 - **R820T**: 24-1766MHz
 - **E4000**: 52-2200MHz

RTL-SDR

- Receive-only
- 8-bit ADC
- 24MHz-1.75GHz (depends on tuner chip)
- 2.4MSPS BW (stable) upto 3.2M
- "HamItUp" upconverter
 - HF coverage

RTL-SDR Driver Installation#1 - Windows

- Plug in your dongle
- Right click zadig.exe file and select "Run as administrator".
- In Zadig, go to "Options->List All Devices" and make sure this option is checked. If you are using Windows 10 or 11, in some cases you may need to also uncheck "Ignore Hubs or Composite Parents".

RTL-SDR Driver Installation#2 - Windows

• Select "Bulk-In, Interface (Interface 0)" from the drop down list. Make sure it is Interface 0 (ZERO), and not "1".

🗾 Zadig			
Device (Bulk-In,	Options Help Interface (Interface 0)		- Edit
Driver USB ID WCID ²	(NONE) 0BDA 2838 00	WinUSB (v6. 1.7600. 16385)	More Information WinUSB (libusb) libusb-win32 libusbK WinUSB (Microsoft)
11 devices	found.		Zadig 2.1.2.677

RTL-SDR Driver Installation - Linux

- Linux users may blacklist RTL so that default DVB-T driver is not loaded when dongle is plugged in.
 - # cd /etc/modprobe.d/
 - # sudo gedit blacklist-rtl.conf
 - # append: blacklist dvb_usb_rtl28xxu
 - OR
 - o # echo "blacklist dvb_usb_rtl28xxu" >> /etc/modprobe.d/blacklist.conf

Outline

- About me
- About tutorial
- GNU Radio
- Lab: Digital Signal Processing (DSP)
- Lab: Software Defined Radio (SDR)
- Lab: Wide Band Frequency Modulation (WBFM)

Frequency Modulation (FM)

FM Radio Multiplex

• It is common practice to multiplex multiple information signals together before performing modulation, as this allows for multi-channel transmission using one carrier.

Broadcast FM (WBFM)

LabWBFM.ipynb

Thanks! murat-sever@live.com