IQEngine

Project Update

Marc Lichtman, Gabriel Nepomuceno, Denis Sutherland,
and all contributors of code, recordings, and plugins

|IQEngine.org

What s it?

RF recording management
analysis
processing
sharing

... allin your browser

IQEngine

A web-based SDR toolkit for analyzing,
processing, and sharing RF recordings

8 Start Browsing

Browse RF recordings shared by the community or your own local files, all in the browser!
View SigMF annotations and other useful metadata

e e ol B L I e T
IQEngine
Lamgt i Dute Ty et B
' R (] T e e Aatine
——
S
=
L
L]
e
e o e st s e L s g ot [T . ‘-'-n:n-
B 22 b f—_—

iy S BAABL Lomgsms]
l-.-d-\:f—u-lw-u.n.uquu- ou T i Gl
[rsRA— 4 b 1 Cophusey

m_bamd_24 Lo [+]

FYT= TR — MAMISNM dgwdi MO0MME SASu b Licbiomam
Do s resl [2 Capumy

R N —
Seices 1l ' ¥
N = T
i | i I l [N —— oy P
—— 4 ol S |] el
. vt o K iy e 13 Cart
o n
- =3 B e
- rd —
B b -2 8% H 0 e E X

About

SigMF

Login

Docs

@ » 00

M Discord () GitHub

Deployment Options

* The public instance at IQEngine.org is used to publicly share recordings
and plugins
» Recordings/plugins hosted either by IQEngine, GNU Radio, or 3" party

* You can also open local files with IQEngine.org

* Only reason to run your own instance is to share recordings privately within
your org, or for analyzing extremely sensitive data

* For all the above, use deployment via Docker images

* Developers of the frontend/backend will want to run a local instance from

&

source

docker

Built on Top of

* An open standard for saving RF recordings
* [t’s a binary IQ file + a JSON file
* SigMF specifies how to write the JSON

e At a minimum, store
1. Sample rate
2. Center frequency
3. Datatype of IQ

 Avoid data bitrot

MW\ What is SigMF?2 NN
@ Benefits ﬁ:\\ SEQ

1. Describe RF recordings

2. Software interoperability
3. Prevent bitrot of datasets] ¥ I
: Vi

One RF Recording Consists of

1 x L 1 x L
g IQlQ
- & ﬁ

.sigmf-data .sigmf-meta

Metadata File

sigmf-meta

(2] ©

captures annotations
deuription: LTE,

global

E;_‘Z:’Q Extensions
; spatial
github.com/sigmf/SigMF signal P antenna

Built on Top of

VAVAVAVAW")'[(-1 T E-3SY (0] | S dVAVAVAVAL
- - @ Benefits ﬁa
* An open standard for saving RF recordings SEQ
1. Describe RF recf:.nrdin_g_:::F
* I'sabinary |Q file + a JSON file 3 Prevent birot of datasel ME

i S|gM F SpeCifieS hOW tO Wl’ite the JSON ; | One RF Recordmg Consists of

e At a minimum, store n .
QIQ

1 . Sa M pl.e I‘ate .sigmf-data .sigmf-meta

2. Center frequency _ Vetadata File
3' Datatype Of IQ | l._sigr'nf-rr':r':.ta

 Avoid data bitrot (1] 2] ®

global captures annotations

Abou: SigMF [bgin Docs @ Discord () GitHub .
Extensions

i Eng_l’a
; spatial
I Q E n gl n e github.com/sigmf/SigMF signal SP antenna

Target Users

* Just like GNU Radio, IQEngine is meant for a variety of users:
e Students

* Hobbyists - hams, CTFs
* Orgs —research labs, companies, gov

* Forresearch or alongside production systems

Plugins >
. U

RF signal processing on the backend, triggered from browser

The plugins backend server is separate, and there can be multiple
* Intheory, plugins don’t have to be open-source, if the 3™ party runs the server

REST-based APl defined in our OpenAPI spec

Allows for plugins to be written in any language

plugins

We have examples/templates for Python and GNU Radio

MITe T M Sclect Plugin

veto: (CHESEND

Use Cloud Storage

src
fm_receiver

fm_receiver_gnuradio

m_signal_detector

» Anngd sim ple_detector

fm_receiver_gnuradio simple_detector

» Glob: fiter anuradic
5_niiter_gnuradio template_plugin

fm_receiver

[9 plugins_api.py

About SigMF Login Docs @ Discord () GitHub

Spectrogram Thumbnail Recording Name Length in Samples Data Type(3) Frequency Sample Rate Number of Annotations Author
B/
m asign in space
M cellular
m drone
I passive radar
W space
I synthetic
analog_FM_France complex !
Recording of two adjacent analog wideband FM stations includ... 88.080782 M float 96.9 MHz 192 MHz Jean-Michel Friedt
3 (download: data, meta) 32 bits (1 Capture)
cellular_downlink_880MHz complex E
Recording of various LMR and cellular downlink signals 20 M signed int 880 MHz 40 MHz Jacob Gilbert
(download: data, meta) 16 bits (1 Capture)
ism_band_24 complex n
2.4 GHz ISM band example 2828312576 M signed int 2430 MHz 56 MHz Marc Lichtman
(download: data, meta) 16 bits (1 Capture)
h complex n
iyt 10M float 1 MHz 1MHz Marc
(download: data, meta) 32 bits (1 Capture)
heti complex n
S ™ float 8486.285 MHz 048 MHz Marc
(download: data, meta) 32 bits (3 Captures)
hetic_int16 complex ﬂ
Sl ™ signed int 2486285 MHz 048 MHz Marc
(download: data, meta) 16 bits {1 Capture)

@dataclass
class Plugin:

" sample_rate: int = @
Python Plugin Example = smierate: inc-e
. # custom params
* Must specify custom params numtaps: int = 51
) cutoff: float = le6 # relative to sample rate
* Must have a run() function that width: float = ©.1e6 # relative to sample rate

takes in sample

def run(self, samples):

* OpenAPIl spec defines interface h = signal.firwin(

self.numtaps,
cutoff=self.cutoff,
width=self.width,
fs=self.sample_rate,
pass_zero=True,

) .astype(np.complex64)

samples = np.convolve(samples, h, "valid")

samples_obj = {
"samples": base64.b6d4encode(samples),
“sample_rate"”: self.sample_rate,
"center_freq": self.center_freq,
"data_type": "iq/cf32_le",

}

return {"data_output”: [samples_obj], "annotations™: []}

def run(self, samples):

A # create a PUB socket
G N U Ra d IO context = zmq.Context()
pub_socket = context.socket(zmq.PUB)
pub_socket.bind(tcp://*:5€81")

P l_ugi n Exa m p le print("started python PUB")

tb = gnuradio_lowpass_filter(self.sample_rate, self.cutoff, self.width)

. tb.start()
* Little hacky but works for print("started flowgraph”)
now with existing blocks b rente a SUB cocket
. sub_socket = context.socket(zmq.SUB)
¢ [)€3f|r163 F)S/tr1()r1 fl()\ﬁJ§§r53F3f1 sub_socket.connect('tcp://127.06.0.1:5082")
USing Zeromq’s SUb source & sub_socket.setsockopt(zmq.SUBSCRIBE, b'') # subscribe to topic of all (needec
. . sub_socket.setsockopt(zmq.RCVTIMEO, 5@@) # may have to increase if its a slou
pub_sink (next slide) print("started python SUB")
° run() function has its own # for now just send entire batch of samples at once, we'll figure out what tt
. . pub_socket.send(samples.tobytes())
pub/sub for feeding in print("sent samples”)
Samples and gettlng the newSamples = np.empty(@, dtype=np.complexé64)
Output while True:
try:
* Come to the workshop for a resp = sub_socket.recv()
. newSamples = np.concatenate((newSamples, np.frombuffer(resp, dtype=nj
handS'On tutO”al except Exception as e: # messy way of figuring out when gnuradio is done
print(e)
break
tb.stop()

tb.wait()

class gnuradio_lowpass_filter(gr.top_block):
def __init_ (self, sample_rate, cutoff, width):

gr.top_block._ init__ (self, "GNU Radio-based IQEngine Plugin", catch_exceptions=True)
self.zmg_sub_source = zeromq.sub_source(gr.sizeof_gr_complex, 1, 'tcp://127.0.0.1:5001"', 10, False, -1)
self.zmg_pub_sink = zeromq.pub_sink(gr.sizeof _gr_complex, 1, 'tcp://127.6.0.1:5002', 1@, False, -1)
self.filter = filter.fir_filter_ccf(1, firdes.low_pass(1l, sample_rate, cutoff, width, window.WIN_HAMMING, 6.76))
self.connect(self.filter, self.zmq_pub_sink)
self.connect(self.zmg_sub_source, self.filter)

Pipelines

IQEngine’s browser interface lets you evaluate and tweak
params of plugins on a variety of RF recordings

But what if you know you want to run a series of plugins on all
recordings being captured by a receiver?

The same Plugins APl can be used to call plugins in a chain

We would like to use an existing format and design software
for creating the chain of plugins, ideally with a web-based
interface (web GRC?)

The pipeline would then run on a Kubernetes cluster, listening
for new recordings to appear in storage or provided via REST

Obviously more tailored towards orgs than individuals

Signal Detection

FM Receive

Speech to Text

Text Search

For You RFML Folks

* Use it at the beginning & end of
the RFML workflow

* Manage IQ recordings used to
form your dataset

* Share your detection and
classification implementation
(inference) with the world, as
plugins

RFML Dataset
.’ (e.g., HDF5)

-
I

%

§ ¢
e

RFML Process

Scope of IQEngine

Yr Visualize of SigMF Recordings

f{ REST API for Signal Detection
[+Classification] Implementations
¥r Web-based and Intuitive

About SigMF Login Docs Discord GitHub
M

IQEngine

* Discord) Events
z . . 1% Channels & Roles NEW
* Thanks to Jumbotron for moderating and helping configure

Community

& IQEngine v

v SERVER INFORMATION -+

¢ GitHUb ISSUGS/PRS ™l announcements
. B rules
* [ssues can also be used for feature requests or ideas

H welcome

* Google Analytics shows 8.8k unique visitors over last 90 days

~ TOPICS -

i general FAR -

Users New users Event count

8.8K 8.7K 17K _ H development
1 526.6% 1532.7% 1378.9% - ' o s v . H usage

I sigmf
H rfml
¥t introduce-yourself

I dsp-comms-rf-chat

v VOICE CHANNELS ==

> General

Code Organization

* Mono-repo

Frontend and backend are built into the same Docker image

Plugins image includes GNU Radio and, in the future, any other open-source
software that will be wrapped into plugins

Docs live as .mdx files and render into https://igengine.org/docs

Frontend uses React, backend is in Python/fastapi, tailwind for css/styling

/api
(Backend)
python, fastapi

/client
(Frontend)

/plugins
{Plugins Backend)
plugins

Cl/CD

* Deployment through Docker images

https://staging.igengine.org is always running the latest “main” branch
* No dev branch, but major releases are periodically tagged

All PRs must pass

Frontend unit tests (vitest)
Backend unit tests (pytest)
Integration tests (playwright)
CodeQL

GitHub’s dependency-review
Mega-Linter (optional)

nghtly integration tests of staging and prod for good measure
* Weekly Dependabot for version bumping
* OpenSSF Scorecard analysis on pushes to main

DO g B

Upcoming Features

* Near-term
* Using a server’s local storage or NAS to host recordings
* Wrapping SatDump into a plugin
* Web Assembly-based client-side FFTs
 UX improvements (a big thanks to Bernard)
* Indicator that client is waiting on the plugin to finish

* Long-term
* Better time/freq/lIQ interactive plots, e.g., ability to display alongside spectrogram
Progress bar for plugins
Plugins pipeline designer and cluster-based executor
Include more SigMF-specific functionality
Cyclostationary processing in place of the FFT

Ways to Contribute

e Contribute:
1. RFrecordings

2. Open-source signal processing implementations via the plugins system
3. Python transmitter code via the siggen tool (education-oriented)

* We can also use help curating recordings

* Code contributors are also nice!

* We are looking for universities and companies/orgs/labs to engage with
* Reach out on Discord or email igengine@vt.edu

One Last Thing...

(If laptop has internet access)

Questions?

Show your support by starring the GitHub Repo! *

https://github.com/igengine/igengine

About SigMF Login Docs 8 Discord
IQEngi -

	Slide 1: Project Update
	Slide 2: What is it?
	Slide 3: Overview Demo
	Slide 4: Deployment Options
	Slide 5: Built on Top of
	Slide 6: Built on Top of
	Slide 7: Target Users
	Slide 8: Plugins
	Slide 9: Plugins Demo
	Slide 10: Python Plugin Example
	Slide 11: GNU Radio Plugin Example
	Slide 12
	Slide 13: Pipelines
	Slide 14: For You RFML Folks
	Slide 15: Community
	Slide 16: Code Organization
	Slide 17: CI/CD
	Slide 18: Upcoming Features
	Slide 19: Ways to Contribute
	Slide 20: One Last Thing…
	Slide 21: Questions?

