
Project Update
Marc Lichtman, Gabriel Nepomuceno, Denis Sutherland,

and all contributors of code, recordings, and plugins

IQEngine.org

What is it?

management
analysis
processing
sharing

RF recording

… all in your browser

Overview Demo

Deployment Options

• The public instance at IQEngine.org is used to publicly share recordings
and plugins
• Recordings/plugins hosted either by IQEngine, GNU Radio, or 3rd party

• You can also open local files with IQEngine.org
• Only reason to run your own instance is to share recordings privately within

your org, or for analyzing extremely sensitive data
• For all the above, use deployment via Docker images
• Developers of the frontend/backend will want to run a local instance from

source

• An open standard for saving RF recordings
• It’s a binary IQ file + a JSON file
• SigMF specifies how to write the JSON
• At a minimum, store

1. Sample rate
2. Center frequency
3. Datatype of IQ

• Avoid data bitrot

Built on Top of

• An open standard for saving RF recordings
• It’s a binary IQ file + a JSON file
• SigMF specifies how to write the JSON
• At a minimum, store

1. Sample rate
2. Center frequency
3. Datatype of IQ

• Avoid data bitrot

Built on Top of

Learn more
about SigMF

+ SigMF Workshop

Target Users

• Just like GNU Radio, IQEngine is meant for a variety of users:
• Students
• Hobbyists - hams, CTFs
• Orgs – research labs, companies, gov

• For research or alongside production systems

Plugins
• RF signal processing on the backend, triggered from browser
• The plugins backend server is separate, and there can be multiple

• In theory, plugins don’t have to be open-source, if the 3rd party runs the server

• REST-based API defined in our OpenAPI spec
• Allows for plugins to be written in any language
• We have examples/templates for Python and GNU Radio

Plugins Demo

Python Plugin Example
• Must specify custom params
• Must have a run() function that

takes in sample
• OpenAPI spec defines interface

GNU Radio
Plugin Example
• Little hacky but works for

now with existing blocks
• Define Python flowgraph

using zeromq’s sub_source &
pub_sink (next slide)

• run() function has its own
pub/sub for feeding in
samples and getting the
output

• Come to the workshop for a
hands-on tutorial

FM ReceiveFM Receive

Pipelines
• IQEngine’s browser interface lets you evaluate and tweak

params of plugins on a variety of RF recordings

• But what if you know you want to run a series of plugins on all
recordings being captured by a receiver?

• The same Plugins API can be used to call plugins in a chain

• We would like to use an existing format and design software
for creating the chain of plugins, ideally with a web-based
interface (web GRC?)

• The pipeline would then run on a Kubernetes cluster, listening
for new recordings to appear in storage or provided via REST

• Obviously more tailored towards orgs than individuals

Signal Detection

FM Receive

Speech to Text

Text Search

fan-out

File format for
RF Recordings and Metadata

Dataset/Recording
Generation Process

Over the air

Synthetic

SigMF
(Proposed native format)

Other
stuff

Core

ExtensionExtensionExtensions

GNU Radio

Analysis, Visualization,
Post-processing of

Recordings

IQEngine GNU Radio

Python

MATLAB

Inspectrum

HDF5 w/
text file

Dataset/Recording Lifecycle

RFML Training
end Evaluation

RFML Dataset
(e.g., HDF5)

Non-ML Forms of Signal Processing

Positioning

Spectrum
Awareness

SIGINT

Radar

Packaging of RFML
Implementations

Deployment
of RFML

DSP/RF Education

1

3

Converter
Scripts

RFML Application Design

RFML Process

1

Scope of IQEngine
Visualize of SigMF Recordings
REST API for Signal Detection
[+Classification] Implementations

2

3 Web-based and Intuitive

Sharing of Recordings
3

Signal
Detection

Signal
Classification

Other obscure apps

RFML
Models

Pre-trained

Cloud

Embedded/
FPGA

CPU/GPU

Sharing
2

Archive/tar

Preprocessing &
Data Massaging

(e.g., pull out desired labels
from SigMF metadata)

Sharing

SigMF Files SigMF Files

(Potential for
another

standard)

For You RFML Folks

• Use it at the beginning & end of
the RFML workflow

• Manage IQ recordings used to
form your dataset

• Share your detection and
classification implementation
(inference) with the world, as
plugins

Community
• Discord

• Thanks to Jumbotron for moderating and helping configure
• GitHub Issues/PRs

• Issues can also be used for feature requests or ideas
• Google Analytics shows 8.8k unique visitors over last 90 days

Link to Discord

Code Organization
• Mono-repo
• Frontend and backend are built into the same Docker image
• Plugins image includes GNU Radio and, in the future, any other open-source

software that will be wrapped into plugins
• Docs live as .mdx files and render into https://iqengine.org/docs
• Frontend uses React, backend is in Python/fastapi, tailwind for css/styling

CI/CD
• Deployment through Docker images
• https://staging.iqengine.org is always running the latest “main” branch

• No dev branch, but major releases are periodically tagged
• All PRs must pass

1. Frontend unit tests (vitest)
2. Backend unit tests (pytest)
3. Integration tests (playwright)
4. CodeQL
5. GitHub’s dependency-review
6. Mega-Linter (optional)

• Nightly integration tests of staging and prod for good measure
• Weekly Dependabot for version bumping
• OpenSSF Scorecard analysis on pushes to main

Upcoming Features
• Near-term

• Using a server’s local storage or NAS to host recordings
• Wrapping SatDump into a plugin
• Web Assembly-based client-side FFTs
• UX improvements (a big thanks to Bernard)
• Indicator that client is waiting on the plugin to finish

• Long-term
• Better time/freq/IQ interactive plots, e.g., ability to display alongside spectrogram
• Progress bar for plugins
• Plugins pipeline designer and cluster-based executor
• Include more SigMF-specific functionality
• Cyclostationary processing in place of the FFT

Ways to Contribute

• Contribute:
1. RF recordings
2. Open-source signal processing implementations via the plugins system
3. Python transmitter code via the siggen tool (education-oriented)

• We can also use help curating recordings
• Code contributors are also nice!
• We are looking for universities and companies/orgs/labs to engage with
• Reach out on Discord or email iqengine@vt.edu

One Last Thing…

(If laptop has internet access)

Questions?

Show your support by starring the GitHub Repo!
https://github.com/iqengine/iqengine

	Slide 1: Project Update
	Slide 2: What is it?
	Slide 3: Overview Demo
	Slide 4: Deployment Options
	Slide 5: Built on Top of
	Slide 6: Built on Top of
	Slide 7: Target Users
	Slide 8: Plugins
	Slide 9: Plugins Demo
	Slide 10: Python Plugin Example
	Slide 11: GNU Radio Plugin Example
	Slide 12
	Slide 13: Pipelines
	Slide 14: For You RFML Folks
	Slide 15: Community
	Slide 16: Code Organization
	Slide 17: CI/CD
	Slide 18: Upcoming Features
	Slide 19: Ways to Contribute
	Slide 20: One Last Thing…
	Slide 21: Questions?

