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Abstract

A real-time SDR receiver of the French time sig-
nal ALS162 is studied, implemented and tested
for GNU Radio. Inspired by the practical ob-
servations and the minor but yet appealing chal-
lenges encountered, this receiver provides an-
other supportive learning exercise for practi-
cal signal processing with GNU Radio. Along
with the transmitter and receiver design, the
present paper addresses several commonly used
signal processing concepts like signal synthe-
sis, FIR and IIR filters, phase modulation, phase
drift compensation, basic synchronization, sym-
bol correlation, decision metrics and error detec-
tion that are applied in terms of GNU Radio.

1. Introduction
ALS162 is the official French time signal transmitted in the
low frequency (LF) band on 162 kHz from Allouis, France.
Before 2017, it was formerly known as TéléDiffusion de
France (TDF) and broadcasted since 1977 alongside the
AM radio France Inter audio transmission which was dis-
continued in 2017. The time transmitter still remains on
air1 and is synchronized by a highly precise cesium atomic
clock. A survey on the history of the time signal and the
Allouis transmitter station is provided in (ACHDR, 1999).

From a technical perspective, the official website of the
operator (SYRTE, 2019) of the French legal reference
time (SYRTE) provides two introducing papers (Gabry,
1980) and (Dubois, 1986) about the original TDF signal.
Aside from that, there are hardly any further detailed of-
ficial specifications on the ALS162 signal available, but
just the very basic base-band phase modulated waveforms
representing the binary symbols and the marker of a new
minute. However, the real-life signal also contains sev-
eral other uniquely recognizable additional waveforms that
clearly belong to the intended signal. Those waveforms are

1The transmitter is usually offline each Tuesday morning for a
few hours due to regular maintenance work.
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not publicly available, but seem to be covered in the non-
public standard NF C90-002 (AFNOR, 1988).

Otherwise, there are several technical and academic web-
sites, e.g., discussing receiver properties of ALS162 in
(EA4GMZ, 2017) and (Langley). Some publicly accessible
receiver implementations are: A C-Sharp-based demodula-
tor provided in (longview, 2022), a micro-controller-based
implementation in (Quillevere, 2020), schematics of differ-
ent receiver circuits in (DAtelec) and (lafibre.info, 2021),
and a plug-in of the open source SDR project SDRAngel
(srcejon and f4exb, 2021) for instance.

Interestingly, no fully capable ALS162/TDF implementa-
tion has been available for GNU Radio so far. Merely a
single unanswered thread on TDF (Young, 2014) in 2014
is mentioned in the GNU Radio newsgroup. Accordingly,
an implementation of ALS162 in GNU Radio covering the
whole processing chain from transmitter, channel and re-
ceiver to decoder is discussed in the present paper.

2. Implementation in GNU Radio
The latest version of the GNU Radio implementations of
the ALS162 transmitter, channel, receiver and decoder is
provided in the related GitHub repository (henningM1r,
2023).

2.1. Transmitter Design

The transmitter flow contains the following main steps: en-
coding, signal synthesis, signal integration and modulation
to the RF band.

2.1.1. ENCODER

The encoding procedure of the current local time and date
in France to the 60 binary time bits of ALS162 is provided
in (Dubois, 1986) and other sources, so that its detailed dis-
cussion is omitted here for brevity. It is assumed that the
encoder will continuously provide correct time bits. It is to
note that the binary ALS162 time code is closely related to
the German DCF77 time code pendant. The main differ-
ence of these two codes concerns the first 15 bits.
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2.1.2. SIGNAL SYNTHESIS

The ALS162 phase signal conveys two composite codes:
1) The abovementioned binary time code and 2) a circularly
repeated bit position code.

The triangle-shaped phase signal carries the previously en-
coded time bits within the first 8 time-slices of 25 ms each,
covering a duration of 8 · 25 ms = 200 ms as depicted in
Figure 1. The tick of each second is aligned to the first zero-
traversal of a zero- or one symbol, i.e. precisely at 50 ms.

Figure 1. Triangle-shaped phase waveforms of time bits 0 (solid
lines - 1 full wave) and 1 (dotted lines - 2 full waves)

From this point on the derivative - or slope - of these phase
signals is used for the following description, since it ap-
pears easier to handle than the original phase signal itself.
The derivative is represented by one of the following dis-
tinct signal levels +1, 0 and 91 for each time-slice. Hence,
the above two time codewords for 0, 1 and the minute
marker can be expressed as follows:

w0 = (+1,−1,−1,+1, 0, 0, 0, 0),

w1 = (+1,−1,−1,+1,+1,−1,−1,+1),

wmin = ( 0, 0, 0, 0, 0, 0, 0, 0).

By using these three codewords and selectively muting the
remaining 800 ms of each second, one could already con-
struct a functioning ALS162 transmission scheme.

However, there are yet further waveform patterns trans-
mitted during the remaining 32 time-slices for 32 · 25 ms
= 800 ms complementing an entire second of 40 time-
slices. A closer inspection reveals that there are simply 60
circularly recurring codewords transmitted in the course of
a minute – one per each second. These codewords are used
to locate the positions of the time signal within the minute.
It is to note that these 60 bit position codewords had to
be reverse-engineered2 from the received signal. These bit
positions are particularly useful for error correction and re-

2These bit position waveforms are obviously not encrypted.

synchronization in case some time bits are disturbed during
reception. The waveforms of the position code include two
further possible derivative signal levels: ±2.

In order to assemble the ALS162 phase signal waveform,
each time bit from the encoder is repeated 40 times to cover
the 40 time-slices of a full second. It is applied as a control
signal to switch between the three derivative signal wave-
forms for the zero symbol w0, the one symbol w1 and
the muted minute break wmin, respectively. The Python-
based Synchronized Waveform Selector block delivers the
switched output signal continuously. Please note that the
closely related GNU Radio Selector block is switched with
the asynchronous messaging API instead.

Afterwards, the bit position codewords are added syn-
chronously to the remaining 32 time-slices of the signal,
so that each time bit is assigned to its position within the
minute. The related flow of this signal synthesis procedure
is shown in Figure 2.

Figure 2. Signal synthesis

2.1.3. SIGNAL INTEGRATOR

The composite derivative signal is then filtered by an ideal
integrator. The integrator is realized by an IIR filter with
the feed-forward coefficients cFF = (1, 0) and the feed-
back coefficients cFB = (0, 1). Its output signal is scaled
by s/r with s = 40 time-slices and sample rate r =
192 kHz. The resulting phase angle is changing gradually
between +1 and 91 radian in accordance to the desired real-
valued base-band phase signal depicted in Figure 1.

2.1.4. RF MODULATION

Next, the composite complex-valued signal is generated
from the phase signal with a constant magnitude of 1 in the
time domain. In the last step of the transmitter, the complex

In (AFNOR, 1988), the publicly viewable table of contents even
substantiates this with a chapter called ”positions de la seconde”.
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base band signal is modulated to the RF band by shifting it
with a complex cosine waveform to the carrier frequency of
162 kHz. Now it is transmitted over the wireless channel.

2.2. Wireless Channel Model

The channel response Y (t) is represented by an additive
white Gaussian noise (AWGN) channel with weak attenu-
ation and occasional impulsive interference:

Y (t) = A(t) ·X(t) + I(t) +N(t).

The previous RF signal of the ALS162 transmitter is
termed by X(t). It is subject to several impairments.
The multiplicative attenuation A(t) imposes very slow
Rayleigh distributed fading as observed from the real-life
signal. Its coherence time is much longer than the sym-
bol duration. Further attenuation effects from the long dis-
tance to the transmitter are not taken into account here.
Deep fades occurred very rarely and only lasted a few min-
utes. The default power of the noise N(t) is set to 0.25
to roughly match the noise power observed in the actual
signal with the SDR hardware setup.

Impulsive interference I(t) is occasionally observed in the
practically received signals as shown in Figure 3.

Figure 3. Exemplary impulsive interference as observed in the
real-life complex base band signal - there are two stronger glitches
at 10 ms and at 180 ms

Interference is only modeled by very basic properties to
roughly match the observations and to induce sufficiently
realistic occasional bit errors in the channel simulation.
The interference waveforms seen in the base band time-
domain are approximated with narrow sinc-functions that
are independently scaled with a Rayleigh distributed am-
plitude factor for each occurrence. The relative sparsity of
the interfering impulses is generated by a very dense ratio
of sampled values from a uniform random source with a
wide range of values. It is out of scope for this paper to in-
vestigate specific details about statistics and shapes of more
realistic interference signals on ALS162.

2.3. Receiver Design

The receiver performs the following main steps: Demodu-
lation, phase drift compensation, averaging signal differen-

tiation, symbol level detection/quantization, synchronized
time-sliced symbol detection, symbol correlation and de-
coding with error detection and error correction.

2.3.1. DEMODULATION

The received complex RF signal is firstly filtered by a Fre-
quency XLating FIR Filter block with cut-off frequency
1 kHz and transition bandwidth 250 Hz in order to be
shifted down to the complex base band. The resulting sig-
nal is further down-sampled with a decimation factor of 12.
This decimation does not cause any harmful aliasing effects
but rather reduces the computational effort for the receiver.

2.3.2. PHASE DRIFT COMPENSATION

Phase modulated signaling inherently implies a phase drift
effect at the receiver. If no phase compensation were ap-
plied, discontinuous phase swaps would regularly be ob-
served at ±π within very few minutes already. These phase
swaps would severely disrupt the signal detection process.

As a countermeasure, a weighted long-term moving aver-
age value of the signal is computed over 15000 samples and
subtracted from the phase signal at a frequency of 24 kHz
to compensate this phase drift. The flow for estimating the
average phase drift value is shown in Figure 4.

Figure 4. Phase drift compensation - average drift estimation

The Python module phase shift fct repetitively adjusts the
weighted corrective phase. The flow for subtracting the
corrective average phase from the phase of the complex
baseband signal is shown in Figure 5.

Figure 5. Phase drift compensation - subtracting average phase
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This naı̈ve approach is already sufficient for achieving
phase stability given the weighting parameters are chosen
adequately. No elaborate phase-locked-loop (PLL) is nec-
essary here. Nonetheless, it is alternatively possible to ap-
ply the PLL Carrier Tracking block with a very low loop
bandwidth of approximately 800 · 10−9 Hz. But the PLL
might easily impose some minor distortions to the signal.
Note that even identical phase compensation parameters
(for both alternatives) behave differently on various ma-
chines - but these parameters can be adapted manually.

The phase drift compensation converges quite fast after a
few seconds already. The performance of this compensa-
tion is acceptable for our use case. No detrimental distor-
tion is observed on the compensated signal. Afterwards
the required real-valued phase signal is extracted from the
complex base band signal for further processing by an av-
eraging differentiator.

2.3.3. AVERAGING DIFFERENTIATOR

To reverse the effect of the ideal integrator presented in
paragraph 2.1.3, a (non-ideal) differentiator is used to re-
store the derivative symbol levels for each time-slice. The
FIR filter coefficients cdiff of the differentiator are:

cdiff = (1, · · · , 1︸ ︷︷ ︸
N1

, 91, · · · , 91︸ ︷︷ ︸
N1

)

A useful choice is N1 = 55 to obtain distinguishable and
fairly smooth signal levels. The filtered phase signal re-
sembles a scaled derivative phase signal with five distinct
and roughly equally-spaced symbol levels. An ideal differ-
entiator with coefficients cdiff = (1,−1) would not expose
the desired slope sufficiently enough from one sample to
the next as it would be hardly stronger than noise.

Two short moving average filters are applied before and af-
ter differentiation to further smooth out some peaks caused
by noise and interference. The non-infinite gradient of the
differentiator and the moving average filters impose slight
delays. The differentiator is also quite sensitive to stronger
interference. The flow is shown in Figure 6.

Figure 6. Averaging differentiator

2.3.4. SYMBOL LEVEL DETECTION/QUANTIZATION

The resulting derivative phase signal is now amplified with
a manually adjustable gain. The gain must be set so that
the noisy symbol levels are observed at approximately

4000, 2000, 0, 92000 and 94000. Four decision thresholds
are located in between at +3000, +1000, 91000 and 93000,
respectively. The threshold blocks and the logical gates
shown in Figure 7 are used to map the input signal levels
to one of the five different symbols +2,+1, 0, 91, 92. The
logical gates ensure that only one output is active while the
other four outputs are simultaneously muted.

Figure 7. Symbol level detection

2.3.5. TIME-SLICED SYMBOL DETECTOR BLOCK

A Python-based implementation of the symbol detector
block is fed with all five output signals from the previ-
ous symbol level detection flow. To detect a symbol for
each 25 ms time-slice, the detector separately counts the
number of continuous and uninterrupted non-zero samples
for each current signal level. After the required number of
samples either fulfills the time-slice duration of 25 ms or
otherwise if the level signal returns to zero, it assigns the
current symbol to the corresponding time-slice. At that in-
stant, all sample counters are reset to zero. Such a reset
also serves as a basic synchronization of the time-slices. If
the number of samples is yet slightly too low, it can still be
accepted within a certain tolerance threshold. The decision
tolerances are also built-in to ignore briefly occurring zero
values while a steeper signal slope of ±2 from ∓1 to ±1
will pass through zero for instance. The time-sliced symbol
detector and its five inputs are shown in Figure 8.

After successful detection, the symbol detector inserts the
symbols for the current time-slice into a finite message
queue. This is done in order to avoid symbol loss caused
by the asynchronous GNU Radio messaging API. As soon
as the queue is full, it will send out all its stored elements.
This queuing actually entails slight delays within the order
of a few milliseconds depending on the configured length
of the queue. For presentation and debugging purposes,
the symbol detector block also inserts message tags for
each detected symbol level into a signal stream that is syn-
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Figure 8. Symbol detector

chronous to the phase signal as depicted in 9. The slight
delays of the tags result from the delays imposed by the
non-ideal differentiator and the moving average filters.

Figure 9. Example of a signal with detected derivative signal lev-
els per time-slice – in this case it is a part of the codeword w0

2.3.6. SYMBOL CORRELATION BLOCK

Next, we need to map the previously produced message
stream of symbols per time-slice to the actual codewords
of both the time code and the position code, respectively.
A Python-based implementation of the symbol correlation
block analyzes a current sliding window of at least 79 sym-
bols, i.e. for almost 2 full seconds. It compares the sliding
window with all 60 bit position codewords of length 32 un-
til the closest codeword and its relative offset within the
window is found. The Euclidean distance di,j between two
codewords wi and wj is used as a metric for non-binary
signals to decide on the detection of a codeword at the pres-
ence of errors. As soon as an adequate bit position has been
detected with a threshold value of di,j ≤ dmin = 3, a sin-
gle human-readable symbol between 0 and 60 is stored for
the position. The detection of the bit position is completed.

The codebook carrying all 60 codewords for the above
comparison is circularly rotated by using the latest received
bit position symbol. This way, the number of iterations per
codeword is significantly reduced for each successive slid-
ing window. In the error-free case, this detection process
will only have to perform one iteration instead of up to 60
for the next second.

Furthermore, the provided offset of the first symbol within
the sliding window of the bit position is also used to locate
the yet undetected time symbol. The time symbol covers
8 time-slices just before the position symbol. In analogy to
the detection of the bit positions, the time symbol is com-
pared to the three codewords w0, w1 and wmin. At this
point, the detected time codeword is also stored.

Then, the sliding window is truncated, so that the two de-
tected codewords are removed from the front of our symbol
stream and ready for successive codeword detections. The
symbol correlation block outputs the stored pair of the time
symbol and the position via the ZMQ PUSH Message Sink
for further processing by the external decoder.

An evaluation of the pair-wise Euclidean distances between
all 60 bit position codewords is depicted in Figure 10. The
plot shows that the bit position codewords wi and wj for
i ̸= j and i, j ∈ {00, · · · , 59} have a minimal Euclidean
distance di,j of at least dmin ≈ 3.46 and a maximal dis-
tance of dmax ≈ 10.59.

Figure 10. Pair-wise distances of all 60 position codewords

The Euclidean distance between the two time codewords
w0 and w1 yields 2. The fairly smooth shape of distances
in the plot also reveals that a well-structured code is used.

2.3.7. ALS162 DECODER

The last element in the receiving chain is the ALS162 de-
coder. The decoder is an independent Python-based script
listening to transmitted ZMQ-messages. It synchronizes to
the current bit position and gathers the time symbols un-
til the next minute marker is received. Then it decodes the
symbols in accordance to the binary ALS162 code (Dubois,
1986) and provides a time-and-date report. It is able to in-
clude the knowledge of error symbols and their positions so
that it can still decode the remaining clean symbols of an
erroneous stream of 60 bits. Since some bit errors can be
located exactly within the stream by using the bit positions,
parity bits are exploited to correct single errors.

Upon starting the decoder, the very first received symbols



ALS162 Time Signal SDR Receiver for GNU Radio

are usually lost, due to the yet incomplete phase compensa-
tion and a few missing time-slices. This last step completes
the overall receiver flow.

3. Practical SDR Receiver Setup
The simulation performance of the transmitter, channel and
receiver is sufficient to work on a single machine. It is use-
ful to selectively test receiver and decoder in a controlled
environment and should work well in both Linux and Win-
dows operating systems on contemporary computers.

3.1. Hardware Setup

For the practical evaluation of the receiver implementation,
an SDR with low frequency reception capability within
roughly 1 kHz to 1 MHz is required to observe and sample
the original RF signal. Moreover, a loop antenna was used.
In the test setup, the loop antenna was mounted indoor at
a window and mechanically fixed to avoid movement. The
sample-rate of the SDR is 192 kHz. The reception qual-
ity within less than 1000 km distance to Allouis was suffi-
cient to obtain a fully clear signal most of the time. Only
some deep fades were observed in rare occasions. How-
ever, impulsive interference signals of unknown origin oc-
curred more often and disrupted single bits. The decoder
ran reliably for several hours without any interruptions.

4. Extensions
Quite a few interesting extensions could be explored, e.g.:

• Resilience to errors by exploiting information from
previous minutes to replace predictably wrong values

• Further exploiting the received Hamming distance in-
formation in the time code for error correction

• Testing other SDRs and (multiple) antennas

• Providing decoded time to external clocks

• Further improving synchronization to reference time

• Simulation and handling of leap seconds

5. Conclusions
A working GNU Radio implementation for an SDR re-
ceiver of the ALS162 time signal was presented. It serves
the basic function to decode the real-life ALS162 time sig-
nal from the transmitter in Allouis within the range of ap-
proximately 1000 km covering France and even parts of
neighboring countries. Several observed detrimental ef-
fects of the channel, e.g. from phase shifting, fading and
impulsive interference have been included. Please note that
that this receiver design does not claim to be theoretically
optimal in terms of precise synchronization, SNR and re-
silience to interference.
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