ALS162 Transmitter (Simulation) 00	RF Channel (Simulation) 0	ALS162 Receiver (SDR) 00000	Insights 00	Backup 00

ALS162 Time Signal SDR Receiver for GNU Radio

Henning Maier

henningM1r@gmail.com

September 8, 2023 13th Annual GNU Radio Conference 2023, Tempe (AZ)

Henning Maier ALS162 Time SignalSDR Receiver for GNU Radio هه مرتقه که مرتقه مرت henningM1r@gmail.com

イロン イロン イヨン イヨン

ALS162 Transmitter (Simulation)	RF Channel (Simulation)	ALS162 Receiver (SDR)	Insights	Backup
00	0	00000	00	00

Table of Contents

- **1** ALS162 Transmitter (Simulation)
- **2** RF Channel (Simulation)
- 3 ALS162 Receiver (SDR)

4 Insights

・ロト・日本・日本・日本・日本・日本

RF Channel (Simulation)

ALS162 Receiver (SDR)

nsights

Backup 00

ALS162 Transmitter

- French legal time signal from <u>Allouis</u> since 1980
- Caesium atomic clock
- LF carrier at 162 kHz
- \blacksquare Bandwidth $\sim\pm250 {\rm Hz}$
- Tx-power ~800kW
- Range \sim 3.500km $\hat{=}$ 2.175mi
- Phase modulated signal
- Tx is under maintenance each Tuesday morning

henningM1r@gmail.com

Henning Maier ALS162 Time SignalSDR Receiver for GNU Radio

ALS162 Transmitter (Simulation)	RF Channel (Simulation)	ALS162 Receiver (SDR)	Insights	Backup
○●	0	00000	00	00

ALS162 Transmitter Simulation

- Current time information (day, month, year, weekday, hour, minute, etc.) is encoded by 60 symbols per minute
- First second: waveform for symbol 0 (here: roughly at position 47 in minute)
- Next second: waveform for symbol 1 ...

ALS162 Transmitter (Simulation)	RF Channel (Simulation)	ALS162 Receiver (SDR)	Insights	Backup
00	●	00000	00	00

RF Channel Simulation

Impairments

- X(t) ALS162 signal modulated to 162kHz
- A(t) Attenuation: very slow fading
- I(t) Independent impulsive interference
- N(t) i.i.d. Gaussian white noise

 $Y(t) = A(t) \cdot X(t) + I(t) + N(t).$

Channel flowgraph & details skipped here

A D K A B K A B K

ALS162 Transmitter (Simulation)	RF Channel (Simulation)	ALS162 Receiver (SDR)	Insights	Backup
00	0	●0000	00	00

ALS162 Receiver

- Note: It is <u>not</u> claimed that this Rx is optimal!
- Main steps of the ALS162 Rx:
 - 1 \checkmark **Demodulation** of RF signal to baseband signal
 - **2** \checkmark **Downsampling** to reduce computational effort
 - **3** \mathcal{P} **Phase shift correction** to stabilize drifting phase
 - 4 🗸 Derivative filtering & moving average FIR filtering for simpler decoding
 - 5 \checkmark Symbol level detection/quantization \approx quantize input to levels 0, $\pm 1, \pm 2$
 - **6** \mathcal{P} **Synchronization** of symbols to regular 25ms time-slices
 - **7** \mathcal{P} **Code correlation** to detect time symbols & bit positions
 - **B** \mathcal{P} **Symbol decoding** to get desired human-readible time information

ALS162 Receiver – Phase Shift Correction

- \blacksquare To compensate drifting phase at $\pm\pi$
- Compute average phase over a longer sliding window and substract weighted avg. phase via corrective feedback
- Alternatively: use PLL Carrier Tracking block with a very small bandwidth instead
- Note: Optimal parameters depend on your CPU's performance

Backup

ALS162 Receiver – Synchronization & Correlation

- Count samples and detect 25ms time-slices within tolerance for values $0,\pm 1,\pm 2$
- Aggregate symbols to a sequence: \cdots , +1, -1, 0, +1, -1, 0, -1, +2, \cdots
- Correlate sequence to time symbols 0,1 and position symbols $0, 1, \cdots, 59$
- Provide detected time & position symbols as messages to decoder with ZeroMQ

A D K A B K A B K

Backup 00

ALS162 Receiver – Decoder

- Decode received bits each minute according to official ALS162 time code specification
- Use known bit positions and parity bits to detect and correct errors
- Display a human-readible time report each new minute

decoded bit at 19: 0 at position: 19
decoded bit at 20: 0 at position: 20
decoded bit at 21: 1 at position: 22
1 bit(s) lost before position: 22
decoded bit at 23: 1 at position: 23
decoded bit at 24: 1 at position: 24
00: Start-bit is 0.
01-02: No leap second.
03-06: ERROR: Bits 21-58 contain erroneous bits.
07-12: All zero.
16: No clock change
17-18: CEST - summer time.
Corrected single error at 27.
Corrected single error at 34.
21-27 & 29-34: Time: 12:37h.
36-41 & 45-57: Date: 27.08.23.
42-44: Weekday: Sunday.
58: Parity of date and weekdays successful.
Rit errors: $3 \Rightarrow$ at positions: [21, 28, 34].
<i>bee errors -> de postetons.</i> [21, 20, 54].

ALS162 Receiver – GUI

henningM1r@gmail.com

ALS162 Time SignalSDR Receiver for GNU Radio

ALS162 Transmitter (Simulation) 00	RF Channel (Simulation) 0	ALS162 Receiver (SDR) 00000	Insights ●0	Backup 00

Insights

- This pretty basic time signal was a bit more challenging than initially expected
- Codewords for positions had to be "brute-forced"
- Indoor reception with antenna fixed at window is feasible (if within range)
- Proper placement and alignment of antenna is recommended
- Antenna should rather not swing in the wind
- Reception quality sometimes suffers from interference
- Using the derivative filter approach is certainly not optimal (but sufficient)
- Choice of phase correction parameters depend on CPU-load
- Testing such a Rx with Tx & channel simulation is recommended
- Using CI for unittesting & coverage with Docker container is recommended

ALS162 Transmitter (Simulation)	RF Channel (Simulation)	ALS162 Receiver (SDR)	Insights	Backup
00	o	00000	○●	00

Thank You!

For further details do not hesitate to take a look into the accompanying paper

- ... or feel free to contact me.
- Repository: https://github.com/henningM1r/gr_ALS162_Receiver

・ロト ・回ト ・ヨト ・ヨト

ALS162 Transmitter (Simulation)	RF Channel (Simulation)	ALS162 Receiver (SDR)	Insights	Backup
00	0	00000	00	●0

Backup: SDR Setup

- SDR with LF reception capability at 162kHz, i.e. within approx. 1-1000 kHz
- (Passive) loop antenna already works fine
- Ordinary PC/laptop with Linux OS or Windows OS works fine
- GNU Radio installation (3.10.1.1) was used here
- Other SDR equipment and antennas were not tested but might work

イロン イヨン イヨン イヨン

ALS162 Transmitter (Simulation)	RF Channel (Simulation)	ALS162 Receiver (SDR)	Insights	Backup
00	0	00000	00	0●

Backup: Phase Drift

- Depicted phase signal suffers from phase drift
- To compensate, adjust parameters *shift_step* and *shift_poll_freq*
- Signal should rather oscillate around zero

