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Abstract

Through the patronage of the The Defense
Advanced Research Projects Agency (DARPA)
Domain-Specific System-on-Chip (DSSoC) pro-
gram, we constructed the Domain-focused Ad-
vanced Software-reconfigurable Heterogeneous
(DASH) system-on-chip (SoC), a coarse-scale
heterogeneous SoC that breaks the trade-off
in computational efficiency versus ease of re-
progamability. The DASH SoC caters to the tar-
get domains of sophisticated RF processing for
communications, radar, positioning, navigation,
and timing (PNT), and spectral situational aware-
ness. We also developed an FPGA-based DASH
emulation platform to showcase the capabilities
of the DASH SoC and aid in rapid testing and
validation. In this paper, we use GNU Radio
to rapidly test and validate the functionality of
the DASH SoC’s custom Forward error correc-
tion (FEC) accelerators with real data. We gen-
erate a realistic communications transmit chain
with LDPC encoding in GNU Radio, and then
feed the resulting output into the DASH SoC em-
ulation framework to perform LDPC decoding
via the FEC accelerator. We will show the results
of the LDPC decoder, and showcase the function-
ality of the DASH SoC. Through GNU Radio,
we are able to develop realistic communications
transmit chains that scale up in complexity with
great ease, enabling us to rapidly and robustly
test the DASH SoC.
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1. Introduction
Modern applications increasingly rely on multiple radio
functionalities to provide more features and capabilities to
users. These systems will require flexible computational
architectures to perform multiple RF operations simultane-
ously and on demand. However, current implementations
of such flexible systems have been limited traditionally by
inflexible, rigid computational capabilities. Consequently,
modern advancements in hardware will drive the design of
future wireless systems with greater functionality and ca-
pabilities compared to current “stovepiped” systems.

Towards this end, as part of the DASH team, we built
a framework to develop flexible, high-performance, low-
power, domain-specific SoCs, while assuring non-expert
programmability. The DASH SoC is an example SoC, de-
veloped via the aforementioned development framework,
that targets the domain of software-defined RF systems: ra-
dios; radars; spectral awareness; positioning, navigation,
and timing; and RF convergence. DASH allows RF system
designers to escape the traditional power & development-
cost limits to innovation (Bliss, 2020; Chiriyath et al.,
2021). Our DASH framework and SoC breaks the trade-
off between ease of reprogrammability, latency and power
performance, as we highlight in Figure 1.

Figure 1. Trade-off between flexibility and performance.

In this paper, we venture down the path towards robust
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testing and validation of our DASH SoC with real data
over-the-air (OTA) for the first time. More specifically,
we employ GNU Radio to develop a realistic communica-
tions transmitter and receiver chains, while employing the
DASH SoC to perform post processing in the form of soft
demodulation and LDPC decoding. This preliminary sys-
tem can be rapidly scaled up in complexity.

2. Background
2.1. DASH Development Framework

The DASH development framework is used to formally
identify application domains and design DSSoCs that have
high performance and can operate at lower power. This
framework provides necessary capabilities to enable re-
programmable and efficient processing of wide domain of
embedded applications.

This framework has a ontological analysis (Uhrie et al.,
2019), compilation and runtime workflow (Mack et al.,
2021; 2020b;a), a flexible and robust scheduling scheme
with tools to evaluate scheduling and resource allocation
performance (Arda et al., 2019; Krishnakumar et al., 2020;
Goksoy et al., 2021) along with high-performance network-
on-chip. DASH SoC includes a heterogeneous cluster of
accelerators which also include re-programmable systolic
array accelerator referred to as domain adaptive proces-
sor (DAP)(Chen et al., 2022).

To enable rapid prototyping and extensive testing we have
also developed an FPGA emulation of DASH SoC on Xil-
inx UltraScale+ VU19P evaluation board.

The emulation currently includes various specialized accel-
erators, ARM core clusters as well FEC and DAP proces-
sors.

2.2. CEDR

Compiler-integrated, extensible, DSSoC runtime (CEDR)
(Mack et al., 2022b) is an open-source platform that al-
lows users to remain in familiar programming environ-
ments while having the ability to automate and dynamically
deploy applications to coarse scale heterogeneous compute
systems which are comprised of cluster of general purpose
processors and tailored accelerators.

CEDR integrates front-end compiler flow with a Linux-
based runtime system. The front-end compilation work-
flow is used to convert C/C++/Python applications into
CEDR compatible binaries. The runtime workflow is then
used to parse, schedule, dispatch and execute those appli-
cations across a heterogeneous pool of resources that are
offered by DSSoC.

The unique capability of CEDR is that it can be easily

ported across any number of execution environments with-
out requiring any major development changes hence re-
maining independent of any heuristic algorithm used for
scheduling or hardware platform involved. Thus, the user
can easily port any given scheduler to a new hardware plat-
form or vice versa.

2.3. GR-CEDR

One of the key limitations of GNURadio has been the
constraints on hardware resources that can be utilized and
their selection at design time. By using GR-CEDR(Mack
et al., 2022a) we can accelerate GNURadio blocks across
a variety of available heterogeneous accelerators such as
FPGA, GPU, custom accelerators such as FEC and re-
programmable systolic array accelerators such DAP dy-
namically by utilizing intelligent runtime scheduler.

GR-CEDR uses the front-end compilation flow provided by
CEDR to convert flow graphs to executable binaries which
can be linked appropriately by minor tweaks to the build-
ing process. For C++ flow graphs this process is much sim-
pler but for Python flow graphs, Cython3 is utilized as an
intermediate step. Once the binaries have been compiled
and linked, GNU Radio flow graph is launched from within
CEDR as an application.

GR-CEDR has been demonstrated to work within GNU
Radio Companion and as an Out-of-tree (OOT) module.
Both of which enable the usage of API calls to the avail-
able pool of accelerators that CEDR provides.

3. LDPC Encoding and Decoding
In this section, the details of the low-density parity check
(LDPC) encoding and decoding processes that are em-
ployed are discussed. The encoding process is done via
GNURadio Companion and the DASH SoC. Specifically,
the FEC Extended Encoder block is used to encode the
message and the LDPC Encoder Definition (via Genera-
tor) block uses the stored generator matrix of the LDPC
Generator Matrix block. The generator matrix is obtained
from the DASH SoC after its own encoding procedure and
fed into our subsequent experiments. The decoding, soft
demodulation of symbols and LDPC decoding, process is
done entirely on the DASH SoC FPGA emulation frame-
work. The DASH SoC employs a custom FEC accelerator
to perform the decoding with low latency and high energy
efficiency (Yue et al., 2022).

This paper considers a specific class of LDPC codes, in
which the parity check matrix is quasi-cyclic in nature.
This class of codes is based on the 5GNR implementation
of LDPC codes.
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3.1. Encoding

The LDPC code is a systematic block code with a sparse
parity check matrix. To achieve this type of encoding, var-
ious encoding schemes can be used such as Gaussian elim-
ination, which is the one used. Gaussian elimination is ag-
nostic to the structure of the parity check matrix, but it is
also computationally intensive.

Given a shift matrix A, the parity check matrix H is formed
by dividing the entire H matrix into chunks of ZxZ blocks,
where Z is the lifting size. The matrix H is set to zero
and based on the value of the shift matrix at A[i][j], the
corresponding ZxZ block in H is filled with a column-
shifted identity matrix. The number of the column shifts
is determined by the value at A[i][j]. If A[i][j] is equal to
-1 then the corresponding block is skipped i.e. the entire
block is zero. This parity check matrix is then converted
to an equivalent form using Gaussian Elimination. This
equivalent form is used to construct the Generator matrix
G which can be used to construct codewords.

3.1.1. GAUSSIAN ELIMINATION

In the Gaussian Elimination method, the generator matrix
G is derived from the parity check matrix H . First, the
parity check matrix is brought to the following form using
Gauss-Jordan Elimination. Let n be the code length and k
be the message length.

Hn−k × n = [ Pn−k × k In−k × n−k ] (1)

Here, I is the identity matrix and P is the parity matrix.
Next, the parity matrix is transposed, P ′, and the generator
matrix, G, is constructed as described below.

Gk × n = [ Ik × k P′
k × n−k ] (2)

Finally, the message bit string u is encoded by vector - ma-
trix multiplication to get the codeword y. The bit strings
are row vectors.

y1 × n = u1 × k Gk × n (3)

This method is computationally intensive because the par-
ity matrix P is dense. This implies an increase in the num-
ber of operations while multiplying.

3.2. Decoding

As evidenced by the inclusion within the 5G standard, a
Quasi-Cyclic LDPC code is an increasingly favorable cod-
ing type. Moreover, it is advantageous for hardware imple-
mentation while still maintaining decoding performance to
other standards. Given a codeword generated from the pro-
cess described in the encoding section, a parity check ma-
trix exists that satisfies HyT = 0 for a valid codeword. The

parity check matrix, H, can be further described as a tanner
graph with variable nodes (VN) describing the message bits
and check nodes (CN) describing the parity bits. The FEC
Accelerator of the DASH SoC employs a Min-Sum algo-
rithm for LDPC decoding. This algorithm is proportional to
others, like a sum-product approach, in a high SNR regime
while being less complex (Anastasopoulos, 2001). As a
result, the FEC Accelerator can maintain its unified struc-
ture with having the ability to switch between coding types
without a large computational cost (Yue et al., 2022). The
Min-Sum algorithm is an iterative process. In the min op-
eration, ηmn, LLRs are calculated from check nodes, m,
to variable nodes, n; conversely, the sum operation, λnm,
computes LLRs from variable nodes, n, to check nodes, m.

ηmn =
∏

k,H(m,k)=1,k ̸=m

sign(λkm) min
k

(λkm) (4)

λmn =
∑

k,H(k,n)=1,k ̸=n

ηkn + η0n (5)

The η0n term within the sum operation is given by the LLR
of the nth bit received. The number of iterations is an ad-
justable parameter of the FEC Accelerator.

4. Experimental Results
In this section, an overview of the experimental setups are
presented. The first experiment involves testing the FEC
Accelerator under an AWGN channel utilizing GNU Ra-
dio Companion and validating it against internal unit tests.
The other experiment is more involved, testing Over-the-
Air data on the emulated DASH SoC. For this experiment,
GNU Radio Companion provides a robust transceiver chain
utilizing only native GNU Radio blocks and the DASH SoC
provides the data processing component. Finally, the re-
sults of each experiment are presented with accompanying
analysis.

4.1. Validation Setup

A simple experimental setup is constructed with GNU
Radio Companion which provides a transmitted signal
through an AWGN Channel. The received noisy symbols
are then processed on the DASH SoC.

The following description explains the GNU Radio Com-
panion Flowgraph and relevant parameters. A Vector
Source sends out a random sequence of 324 bits unpacked
as a byte. These bits are then encoded via the FEC Ex-
tended Encoder block. This block uses the LDPC Encoder
Definition (via Generator) with an LDPC Generator Matrix
that was constructed prior on the DASH SoC and written
to a compatible format - alist. The LDPC encoding is a
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rate 1/2 code which results in a 648 byte, of 1 significant
bit, codeword. This codeword is then BPSK modulated
with a Chunks to Symbols block. Finally, these symbols
are summed with an AWGN noise source to provide noisy
complex symbols. These symbols are then written to file
and subsequently read and processed on the DASH SoC.
Specifically, approximate log-likelihood ratios (LLRs) are
computed and recast to integers for BPSK Soft Demodu-
lation, and then the FEC Decoder API is called. This API
requires information on the dimensions of the shift matrix,
the lifting size, the shift matrix itself, and the fixed-point
LLRs. The FEC Accelerator performs the Min-Sum algo-
rithm described in the LDPC Decoding section with a user-
set max iteration of eight. By manipulating the Noise vari-
ance of the AWGN, and therefore Noise Power, we com-
pute a small sample Monte-Carlo. Since our signal is of
unity gain (0 dB), this allows to vary SNR and test the re-
sulting bit error rate.

4.2. Validation Results

-10 -8 -6 -4 -2 0 2

SNR (dB)

10-3

10-2

10-1

100

B
E

R

BER vs SNR, R = 1/2, k = 324, LDPC in AWGN Simulated Channel

Average

Figure 2. Bit-error rate vs. SNR for LDPC decoding via the
DASH SoC’s FEC accelerator. The bit-error rate clearly decreases
as SNR increases, as expected. Moreover, the result follows the
internal unit tests performed validating previous findings. This
ultimately demonstrates the ability of GNU Radio Companion to
act as a proper simulation test-bed for the DASH SoC.

In this section, we review the results of the simple test of
the DASH SoC. This is done by plotting the bit-error rate of
the DASH SoC FEC accelerator as a function of the Signal
to Noise Ratio (SNR) in 2. As seen from Figure 2, we see
the bit-error rate decreases as the SNR increases, which is
as expected. When juxtaposed with internal unit testing of
the same experiment, similar results are found. This con-
cludes and shows the ability of GNU Radio Companion,
and GNU Radio at large, to act as a user-friendly environ-
ment for simulated testing of the DASH SoC. It should be
noted that these results are obtained over a Monte-Carlo
simulation of five samples so randomness of the noise is
not perfectly averaged. Additionally, the codeword and it-
erations are short thus not providing the lower BERs typi-
cally found at much higher SNRs. However, this unit test

can be expanded to run over multiple Monte-Carlo simu-
lations to alleviate these problems. Further integration be-
tween GNU Radio and our DASH SoC, via something akin
to GR-CEDR (Mack et al., 2022a), will rapidly reduce the
amount of effort required to do such testing.

4.3. Over-the-Air Setup

Figure 3. System Block Diagram presenting how each component
is done.

Figure 4. The physical setup of the USRP B210 Radio. Transmis-
sion from RF A (TX/RX) to reception of RF B (RX2) with 3 dBi
omni-directional antennas. A 30 dB attentuator is placed on the
receive antenna.

For the over-the-air component, we use GNU Radio, USRP
B210 Software Defined Radio (SDR), MATLAB, and the
DASH SoC to execute the experiment.

Figure 5. GNU Radio Companion Transmit Chain of OTA Com-
ponent.
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The entire transmit chain is implemented in GNU Radio
Companion. A Vector Source block sends out a predefined
message sequence on repeat. The message sequence is 324
bits in length. A 13-bit barker code is included at the begin-
ning of the message to get a good correlation at the receiver.
This sequence is then sent to the FEC Extended Encoder
block. The encoding is done as mentioned in section 4.1.
The encoded message is then packed to bytes by the Pack
K Bits block. These packed bytes are fed to the Constella-
tion Modulator block which modulates the encoded bytes
to a BPSK signal. The block also performs pulse shaping
at 4 samples per symbol. This pulse shaped BPSK signal is
transmitted by the USRP B210 SDR at a gain of 70 dB.

Figure 6. GNU Radio Companion Receive Chain of OTA Com-
ponent.

The receiver chain contains these components - GNU Ra-
dio, MATLAB, and the DASH SoC. In the GNU Radio
environment, the signal is received at a gain of 50 dB. The
signal is also attenuated by a 30 dB attenuator attached to
the receiver antenna. A Correlation Estimator block is used
at this point to provide a phase estimate to the subsequent
Costas Loop block. The signal is correlated over the en-
tire modulated encoded sequence. The Costas Loop block
uses the phase estimate to correct for the phase change thus
equalizing the channel. A second Correlation Estimator
block is used to locate the encoded sequence in the data
stream. The outputs are written to a file for use in MAT-
LAB. MATLAB uses the information about the correlation
peaks to find the pulse shaped encoded message and ex-
tract the BPSK symbols from the signal. These symbols
are written to rewritten to a binary file and supplied to the
DASH SoC. The message sequence is computed by the
FEC accelerator on the DASH SoC as explained in Section
4.1.

4.4. Over-the-Air Results

The following illustrates the results of the over-the-air ex-
ercise.

Figure 7 shows the received waveform, a pulse-shaped
BPSK signal affected by the phase of the line of sight chan-
nel.

From the constellation plots before and after the Costas
Loop, shown in Figures 8 and 9 respectively, we can see
that the block uses the phase estimate from the Correla-

Figure 7. Received waveform of pulse-shaped data.

Figure 8. Received Constellation. Given the system parameters
and setup, the constellation is a phase shifted BPSK.

tion Estimator to correct for the channel. Following equal-
ization, the BPSK symbols remain on the real axis, as ex-
pected.

Figure 9. Constellation after Costas Loop providing a equaliza-
tion. The initial correlation information tags are provided to the
Costas Loop for a faster convergence using data.

After equalizing, the noisy symbols are further processed
in MATLAB with windowing and down sampling to ex-
tract symbols of interest. This packet is then fed into the
decoder of the DASH SoC’s FEC Accelerator. The acceler-
ator successfully computes the decoded bits with a bit error
rate of zero. Given the system setup of a short link and in-
put parameters of the USRP B210 TX/RX Gains, this result
is anticipated.
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5. Conclusion
In this paper, we showcase the functionality of the novel
DASH SoC and process a test case of real over-the-air data.
The simple test framework verifies the functional correct-
ness of the DASH SoC’s custom unified FEC accelerator.
The over-the-air experiment demonstrates the practical ca-
pabilities of this accelerator and the DASH SoC in gen-
eral. GNU Radio provides a platform of rapid testing for
novice and knowledgeable users alike, either through sim-
ulation or assisting with over-the-air experiments. GNU
Radio can also be used to easily scale up the complexity
of either situation by quickly changing parameters such as
the waveform or reception techniques. In combination with
the prior work of GR-CEDR (Mack et al., 2022a), this joint
work demonstrates the potential integration of GNU Radio
with the DASH SoC to provide a platform of robust test-
ing.
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