

Wireless Signal Processing Education

Murat Sever msever@etu.edu.tr

September, 2023

Outline

Motivation

Curriculum

Standalone Educational Kit - HaKi

Next Steps

Problems

Complex & Abstract

Proprietary & Expensive

Simulation-only

Hardware-based

Time&Place Restricted

Lacking Software

Solution

Open System

Modular

Real-world Signals

Professional Development

Mobility/Remote

Software-based

TOBB ELE361L Course

RF Front-End (RFFE)

Curriculum

GINURADIO

Labs based on Jupyter Notebook

- DSP
- SDR
- Python/Matlab
- AM
- NBFM
- WBFM
- Digital
- ADSB

Goals

- Engagement
 - Interesting real-world projects
 - Building DSP/Programming/Technical skills
- Unique
 - Windows/Linux/Mac
 - All-in-one: Apps+GNU Radio+JupyterLab
 - Matlab/Python
 - Remote-ready

Learning Outcomes: Weeks 1-5

DSP/Comm.

Tech. (Tools/Libs/Programming)

8

Week-1	Introduction to Communication Systems, SDR Fundamentals
	GitHub, GitHub Classroom, Markdown
Week-2	DSP Fundamentals
	Conda, GNU Radio
Week-3	Sound card processing, Basic filtering (filter type: HP/LP/BP, cutoff frequencies, taps, transition bandwidth), Nyquist Theorem, Aliasing
	Git, GNU Radio Companion, GNU Radio flowgraph creation
Week-4	Sound card processing, Multirate SP, Decimation, Stereo sound and DTMF tone generation
	Git, GNU Radio
Week-5	FFT, Frequency resolution, Negative frequencies, Nyquist, Ideal LowPass filter
	Jupyter-lab, Matlab/Python

Learning Outcomes: Weeks 6-10

DSP/Comm.

Tech. (Tools/Libs/Programming)

Week-6	AM, HF Band, Airband, IQ record types (RTL-SDR, USRP)
	Osmocom Software Suite (rtl_test, rtl_sdr), SDR#, Matlab/Python
Week-7	NBFM, VHF band, Handheld Radios, FM Repeaters, CTCSS
	Osmocom Software Suite (rtl_sdr), SDR#, Matlab/Python
Week-8	Wide Band FM Components: Mono/Stereo, Pilot tones, RDS, Subchannels
	Osmocom Software Suite (rtl_sdr), SDR#, Matlab/Python
Week-9	Digital Signals, QPSK, Constellation, Pulse shaping, Synchronization, Decoding
	GNU Radio
Week-10	Digital Comm. Signal (ASD-B), Preamble, Manchester encoding, Thresholding
	Osmocom Software Suite (rtl_sdr, rtl_adsb), SDRAngel, Matlab/Python

Summer 2021, Fall 2022

All students agree that

- "Course engaged me in learning Communication Systems"
- "I learned new tools I can use in future"

GitHub Classroom is liked by 100%

Python is preferred over Matlab

The winner: GNU Radio

Communication Kit Project

- Low-cost
- FOSS
- Ready-to-go, one-place platform
- Programming skills
- Suitable to IoT, DL, DIY projects

Wireless Signal Processing at the Edge

RF Front-End (RFFE)

7-inch Capacitive Touch Display (Optional)

Single Board Computer (SBC)

HaKi GUI

A R D C 비바

AMATEUR RADIO DIGITAL COMMUNICATIONS

NVIDIA Academic Hardware Grant

ARDC Education Grant

Next Steps

More modules

Advanced content (graduate study)

Step-up SDRs

GPU acceleration (CUDA/cuSignal))

Useful Deep Learning applications

Thanks

Teach your students

- to doubt,
- to think,
- to communicate,
- to question,
- to make mistakes,
- to learn from their mistakes, and most importantly
- have fun in their learning