
Evaluating GPP Predictors for Software Based Waveform Performance

William “BJ” Blair WBLAIR@ANDROCS.COM

ANDRO Computational Solutions, 111 Dart Circle, Rome, NY 13440 USA

Dr. Ashwin Amanna AAMANNA@ANDROCS.COM

ANDRO Computational Solutions, 111 Dart Circle, Rome, NY 13440 USA

Timothy Reichert TREICHERT@ANDROCS.COM

ANDRO Computational Solutions, 111 Dart Circle, Rome, NY 13440 USA

Michael Gudaitis MICHAEL.GUDAITIS@US.AF.MIL

Air Force Research Laboratory, Rome, NY 13440 USA

Abstract

Making full use of a computer’s capabilities to-
day is a challenging task due to increased hard-
ware and software complexity, requiring the use
of multithreading, SIMD intrinsics, and over-
clocking to squeeze as much performance out of
a system as possible. A challenge is predicting
how a software-based waveforms will perform
based on published benchmarks on a general pur-
pose processor (GPP) of interest and where the
key limiters exist. This is valuable insight to de-
termine implementation and optimization strate-
gies for software-based waveforms. This pa-
per attempts to identify key indicators of mod-
ern GPP performance for usage with waveform
software, using LDPC and DVB-S2 waveform
benchmarks on two consumer grade desktops.
We find a correlation in software performance
between GPP or memory reliance and GPP clock
speed and cache, as well as the importance of
system tuning and overclocking.

This material is based upon work supported by Air
Force Research Laboratory (AFRL/RITE) under contract
FA8750-20-C-0529. Any opinions, findings, conclusions
or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of
AFRL.

Proceedings of the 13 th GNU Radio Conference, Copyright 2023
by the author(s).

1. Introduction
At ANDRO Computational Solutions, it is a common need
for us to decide between different computer systems for use
on a given GPP-based software waveform project. Thanks
to Moore’s law and constant advancements in CPU tech-
nology, since 2015 for us this has been a recurring event,
with the top available GPPs changing and being intro-
duced constantly. For this paper the two particular CPUs
in question are the Intel i9-13900K and the AMD Ryzen
9 7900X, which we test using three LDPC and DVB-S2
implementations: ANDRO’s proprietary implementation,
AFF3CT (Cassagne et al., 2021), and gr-dvbs2rx (Freire
& Economos, 2023), with LDPC from (Inan & Schiefer,
2023). The full system specifications for both systems are
given in tables 1 and 2. As pure software-based wave-
forms run entirely on the GPP, maximum waveform rates
and throughput are largely tied to and dependant on its per-
formance. Software defined waveforms usually act as an
intensive load on the system, so for our success we want to
ensure we know of and select the highest performing GPPs
and other computer components available. Our goal then is
to provide guidance and draw conclusions about predicting
said performance.

Both systems were tested with and without overclocking.
For the i9 system, we were able to use a built-in AI over-
clocking feature, which involved training the system via a
stress test, in our case Prime95 (Mersenne Research, 2023).
This resulted in an increase in CPU frequency from 5.5 to
5.9 GHz, and a memory frequency increase from 4800 to
7200 MHz. We also disabled e-cores in the BIOs based on
past testing which had showed improved performance with
only p-cores enabled. On the Ryzen system, the AI feature
was unavailable, and instead used the BIOs automatic over-
clocking, which increased the CPU frequency from 5.73 to
5.82 GHz and the memory from 4800 to 6400 MHz.



Evaluating GPP Predictors for Software Based Waveform Performance

For full DVB-S2 waveform testing, we used two Ettus
X300 SDRs connected to a single desktop via a 10 Gb eth-
ernet card with two ports. They were wired together with
SMA cables and 30dB of attenuation. One radio was used
for transmit, the second for receive.

Initially, at a first glance, we expect the i9 to outperform
the Ryzen based on CPU information and available bench-
marks online. The i9 has a lower base clock speed but
higher overclocked speed, and shows a higher PassMark
CPU Mark (59,894 vs. 52,412) and single thread rating
(4,678 vs. 4,327) (PassMark Software, 2023).

OS Ubuntu 20.04.6 LTS
Linux Kernel 5.15.0-72-generic

Compiler GCC 11.1.0
CPU Intel i9-13900K
RAM 32 GB

CPU Power Governor Performance
Active CPU Cores 16
Max CPU Speed 5.5/5.9 GHz

RAM Speed 4800/7200 MHz

Table 1. System specifications for i9 desktop.

OS Ubuntu 20.04.6 LTS
Linux Kernel 5.15.0-72-generic

Compiler GCC 11.1.0
CPU AMD Ryzen 9 7900X
RAM 32 GB

CPU Power Governor Performance
Active CPU Cores 24
Max CPU Speed 5.73/5.82 GHz

RAM Speed 4800/6400 MHz

Table 2. System specifications for Ryzen 9 desktop.

2. LDPC Benchmarks
We first ran throughput tests on three different LDPC im-
plementations for use with DVB-S2, on both the i9 and
Ryzen systems with and without overclocking. A code rate
of 1

2 and normal frame length (64800) were chosen arbi-
trarily. Early termination was disabled, all running with a
fixed iteration count of ten. We used the separate, stan-
dalone benchmark programs included with each version,
with parameters matching as closely as possible between
them. AFF3CT ran with 4 threads, as this seemed to result
in the maximum throughput out of testing with 1,4,5,6, and
16 threads. The XDSOPL program was modified to use a
different throughput calculation to more closely match the
ANDRO and AFF3CT calculations, and have early termi-
nation hard-coded to be disabled. The benchmarks used an

EbN0 of 6.9897 dB (the default for the XDSOPL bench-
mark) to generate random, AWGN modified input. The
exact benchmarking syntax for AFF3CT and XDSOPL is
given in the appendix. The results are shown in table 3.

System ANDRO AFF3CT XDSOPL
i9-13900K 160 113 139

i9-13900K Ovr. 168 129 139
Ryzen 9 217 116 110

Ryzen 9 Ovr. 222 119 112

Table 3. LDPC Benchmark Throughputs, in Mbps.

These results show that the ANDRO LDPC test performed
better on the Ryzen, while the i9 gave higher results for
the XDSOPL. For AFF3CT, the Ryzen performed slightly
better without overclocking, but with overclocking gave
higher throughput on the i9.

To explore why the tests performed differently between
the two systems, we analyzed the benchmarks using using
perf, cachegrind, Intel VTune Profiler, and gprof. Perf is a
tool available in Linux to monitor CPU event data during
an application’s runtime, and requires no special usage or
compilation flags of the target application. Cachegrind is
a tool included with Valgrind which profiles a program’s
cache usage in simulation, and requires the application to
be compiled with debug flags (-g in GCC). Finally, VTune
and gprof are both profilers which trace the most time-
consuming functions within an application’s code. Gprof
requires a special complication flag (-pg) to generate trac-
ing information. VTune additionally can provide informa-
tion such as memory, micro-architecture usage and flame
graphs, with the downside being it needs to be ran on an
Intel CPU to work fully. Thus for our tests we ran VTune
on the i9 system. We were unable to use cachegrind on
the XDSOPL and AFF3CT tests due to errors, as well as
VTune on AFF3CT, for which we used gprof instead. In
cachegrind with XDSOPL, we found the benchmark would
exit with an unhandled instruction/illegal opcode message.
When running AFF3CT in both cachegrind and VTune, the
benchmark failed to allocate required memory. The perf
output for each benchmark we did not find particularly use-
ful or draw conclusions from when compared to the other
programs and is therefore not discussed here.

We speculate that the ANDRO LDPC likely was faster on
the AMD system due to the Ryzen having twice the amount
of L3 cache-memory as the i9, as well as being direct-
mapped as opposed to associative (table 4), which from
our research is faster (Ho, 2018). As shown in table 5, the
ANDRO implementation is more memory dependent, and
thus is more affected by memory and cache speed, while
the XDSOPL LDPC is more GPP dependent. The “Top
AVX intrinsic” refers to the VTune hotspot summary re-



Evaluating GPP Predictors for Software Based Waveform Performance

sults, indicating the CPU spent the most time executing
said AVX call. The ANDRO intrinsic mm256 store si256
is a memory storing operation, whereas the XDSOPL
mm256 max epi8 is a logical operation stressing the CPU.

The bound percentages refer to how often the CPU was
stalled on different memory locations during execution.
According to (Areej, 2022), the Ryzen 9 has a 50% higher
cache bandwidth than previous Ryzens and other 12th gen-
eration Intel CPUs. It is also worth nothing that, in similar
work (Grayver, 2019), the author found that the amount
of cache available is a limiting factor of waveform perfor-
mance on a given CPU, as opposed to the number of cores
available to add more processing threads.

For the AFF3CT version, we see that the Ryzen gave higher
throughput at base clock speed, while the i9 throughput
was higher when overclocked. This seems to match the
Ryzen having a higher base frequency, but the i9 having a
higher overclocked frequency. Finally, examining the gprof
output for AFF3CT, we find the top reported function is
decode single ite<0>, which, examining the source code,

seems to be composed of mostly logical operations over
loading and storing operations. This indicates the AFF3CT
LDPC is more CPU bound, going along with the base and
overclocked results.

Metric i9 Ryzen 9
I1 cache size 32768 B 32768 B
I1 cache type 8-way associative 8-way associative
D1 cache size 49152 B 32768 B
D1 cache type 12-way associative 8-way associative
LL cache size 37748736 B 67108864 B
LL cache type 18-way associative direct-mapped

Table 4. ANDRO LDPC Cachegrind Report Output.

Metric ANDRO XDSOPL
Top AVX intrinsic store max
Back-End Bound 63.3% 28.7%
Memory Bound 33.3% 23.3%

L3 Bound 6.3% 0.6%

Table 5. LDPC Benchmark Selected VTune Results.

3. DVB-S2 Benchmarks
To benchmark the full DVB-S2 waveform, the ANDRO
implementation ran in real time using X300s, and we in-
creased the configured sample rate and symbol rate until
the waveform would not stably synchronize. We ran at a
maximum sample rate of 100 Msps and increased symbol
rate from there. Due to the discrete available sample rates
of the X300, to increase further we would have had to move

directly to 200 Msps, which is why the reported symbol
rates are so similar compared to AFF3CT and gr-dvbs2rx.

The AFF3CT and gr-dvbs2rx waveforms ran in simula-
tion, as fast as they could on the given CPU. These two
were simulated as we were unable to fully synchronize
when using X300s with the AFF3CT waveform, while for
gr-dvbs2rx we were unable to fully synchronize above 3
Msym/s, although HTOP reported CPU usage was low
(50%). The gr-dvbs2rx real-time results are in line with
the author’s presentation in (Freire, 2022), which reports
1 Msym/s usage. The AFF3CT waveform initially would
crash upon startup due to using up the entire system’s RAM
(32 GB), which was resolved by reducing the number of
RX threads down from 28 to 8, based on the author’s rec-
ommendation. We additionally compiled AFF3CT with
hwloc disabled, as the receiver would crash and fail on
thread pinning. For the synchronization issue, we contacted
the authors of AFF3CT but received no response.

The results for symbol rate are shown in table 6. ANDRO
and gr-dvbs2rx ran using DVB-S2 configuration QPSK,
rate 1

2 , normal frame length, while AFF3CT used QPSK,
rate 3

5 , short frames as the 1
2 normal frame length con-

figuration was unavailable. The result symbol rates for
AFF3CT and gr-dvbs2rx were calculated based on the
number of reported processed frames over the duration of
the benchmark.

Unlike the LDPC benchmark results, the i9 seems to uni-
versally outperform the Ryzen 9 running the full DVB-S2
waveform. For the ANDRO implementation, running the
full waveform as opposed to just LDPC appears to become
more CPU bound rather than memory bound. In VTune
profiler, the memory store AVX intrinsic moved from the
top hotspot down to 4th, and is instead replaced with phase
correction. Back-end, memory, L3 latency, and DRAM
bound percentages all dropped from the ANDRO LDPC to
DVB-S2, as shown in table 7. The AFF3CT and gr-dvbs2rx
full waveform results both match their LDPC counterparts
in that the i9 outperformed the Ryzen 9.

System ANDRO AFF3CT gr-dvbs2rx
i9-13900K 65.000 52.116 14.502

i9-13900K Ovr. 75.000 54.704 15.033
Ryzen 9 65.000 50.816 12.512

Ryzen 9 Ovr. 65.000 51.283 12.966

Table 6. DVB-S2 Benchmark Max Symbol Rates, in Msps.

4. Conclusion and Future Work
When deciding between GPPs and different system com-
ponents for use with waveform development, we draw the
following conclusions. First, you cannot always rely on



Evaluating GPP Predictors for Software Based Waveform Performance

Metric LDPC DVB-S2
Top Hotspot mm256 store si256 correctPhase

Back-End Bound 63.3% 52.2%
Memory Bound 33.3% 25.8%

L3 Bound 6.3% 6.9%
L3 Latency 35.7% 12.6%

DRAM Bound 11.3% 8.8%

Table 7. ANDRO Benchmarks Selected VTune Results.

available consumer benchmarks to compare CPUs. Each
application is unique and may interact differently with the
hardware than a general stress-test program does, which
tends to focus on stressing all of the available cores with
as many threads as possible, whereas we tend to find single
thread performance ratings more helpful. Note again that
(Grayver, 2019) found cache as a limiting/key factor for
scaling performance on a cpu, as opposed to the number
of available cores. Similarly, in this paper we found higher
AFF3CT throughput with only four threads, as opposed to
as many threads as there are cores. Therefore, when com-
paring GPPs, one having more cores than another does not
necessarily mean it will give better results for your appli-
cation.

Second, it is important to consider your application’s spe-
cific behavior when looking for CPU traits. Analyzing
the waveform software with the tools from this paper or
others available can show if the code is generally mem-
ory dependant or processing dependant. Knowing this,
you can compare two systems and see which is stronger
in the given area. In our case, the Ryzen seems better for
cache and memory, while the i9 is better for CPU compu-
tational speed. Finally, overclocking ability is worth con-
sidering also. For the DVB-S2 benchmarks, the i9, which
we were able to overclock much farther than the Ryzen,
resulted in both AFF3CT and ANDRO outperforming non-
overclocked Ryzen results, of which the Ryzen was supe-
rior initially.

For future work, we would like to investigate deeper into
the real-time synchronization issues encountered with gr-
dvbs2rx and AFF3CT. Running the ANDRO DVB-S2 im-
plementation in simulation and the other two waveforms
over RF, we could compare the simulated performance
to real time performance. Additionally, investigating the
AFF3CT hwloc issue could help improve throughput by
pinning threads to GPP cores, reducing context switching
by the OS.

References
Areej. Amd ryzen 9 7900x delivers nearly 50% more cache

bandwidth than the 12th gen intel core cpus, August

2022. URL https://tinyurl.com/3fhejcnc.
Last Accessed July 26, 2023.

Cassagne, Adrien, Leonardon, Mathieu, Tajan, Romain,
Leroux, Camille, Jégo, Christophe, Aumage, Olivier,
and Barthou, Denis. A Flexible and Portable Real-time
DVB-S2 Transceiver using Multicore and SIMD CPUs.
In The 11th IEEE International Symposium on Topics in
Coding (ISTC 2021), Montréal, Canada, August 2021.
doi: 10.1109/ISTC49272.2021.9594063. URL https:
//hal.science/hal-03336450.

Freire, Igor. Grcon22: gr-dvbs2rx: An overview of the
project state and path forward, Oct 2022. URL https:
//www.youtube.com/watch?v=qcqvfElQUVk.
Last accessed 18 July 2023.

Freire, Igor and Economos, Ron. gr-dvbs2rx: a Software-
Defined DVB-S2 Receiver based on GNU Radio, March
2023. URL https://github.com/igorauad/
gr-dvbs2rx.

Grayver, Eugene. Scaling the fast x86 dvb-s2 decoder to
1 gbps. In 2019 IEEE Aerospace Conference, pp. 1–9,
2019. doi: 10.1109/AERO.2019.8742225.

Ho, Steven. Direct-mapped and set associative
caches, July 2018. URL https://inst.eecs.
berkeley.edu/˜cs61c/resources/su18_
lec/Lecture15.pdf.

Inan, Ahmet and Schiefer, Jan. Ldpc: Playing with low-
density parity-check codes, 2023. URL https://
github.com/xdsopl/LDPC.

Mersenne Research, Inc. Gimps: Great internet
mersenne prime search, 2023. URL https://www.
mersenne.org/.

PassMark Software. Cpu bench-
marks, 2023. URL https://www.
cpubenchmark.net/compare/5022vs5027/
Intel-i9-13900K-vs-AMD-Ryzen-9-7900X.

A. Benchmark/Waveform Syntax
XDSOPL LDPC: testbench 10 T2 A1 QAM16 32

AFF3CT LDPC: aff3ct -C LDPC -K 32400 -N 64800 –
enc-type LDPC DVBS2 -m 6.9897 -M 7.0 –dec-simd IN-
TER –mdm-type BPSK –mdm-implem FAST –src-type
RAND –src-implem FAST –chn-implem FAST –dec-type
BP HORIZONTAL LAYERED –dec-implem NMS –dec-
norm 0.75 –dec-ite 10 –sim-threads 4 –dec-no-synd

gr-dvbs2rx DVB-S2: ./dvbs2-tx –source file –in-file ./ex-
ample.ts –in-repeat –frame-size normal –modcod QPSK1/2

https://tinyurl.com/3fhejcnc
https://hal.science/hal-03336450
https://hal.science/hal-03336450
https://www.youtube.com/watch?v=qcqvfElQUVk
https://www.youtube.com/watch?v=qcqvfElQUVk
https://github.com/igorauad/gr-dvbs2rx
https://github.com/igorauad/gr-dvbs2rx
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture15.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture15.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture15.pdf
https://github.com/xdsopl/LDPC
https://github.com/xdsopl/LDPC
https://www.mersenne.org/
https://www.mersenne.org/
https://www.cpubenchmark.net/compare/5022vs5027/Intel-i9-13900K-vs-AMD-Ryzen-9-7900X
https://www.cpubenchmark.net/compare/5022vs5027/Intel-i9-13900K-vs-AMD-Ryzen-9-7900X
https://www.cpubenchmark.net/compare/5022vs5027/Intel-i9-13900K-vs-AMD-Ryzen-9-7900X


Evaluating GPP Predictors for Software Based Waveform Performance

–sym-rate 5000000 –samp-rate 10000000 –snr 10.5 –
freq-offset 0 — ./dvbs2-rx –frame-size normal –modcod
QPSK1/2 –ldpc-iterations 10 –log-all –sym-rate 5000000
–samp-rate 10000000 –out-fd 3 3¿ /dev/null

AFF3CT DVB-S2: ./bin/dvbs2 tx rx -F 8 –src-type
USER BIN –src-path ./example.ts –snk-path out-
put stream fifo.ts –mod-cod QPSK-S 3/5 –dec-implem
NMS –dec-ite 10 –dec-simd INTER


