
Introducing RSESS: An Open Source Enumerative Sphere Shaping
Implementation Coded in Rust

Frederik Ritter UOOGK@STUDENT.KIT.EDU
Andrej Rode RODE@KIT.EDU
Laurent Schmalen LAURENT.SCHMALEN@KIT.EDU

Karlsruhe Institute of Technology (KIT), Communications Engineering Lab (CEL), Hertzstr. 16, 76187 Karlsruhe

Abstract
In this work, we present an open source im-
plementation of the enumerative sphere shap-
ing (ESS) algorithm used for probabilistic con-
stellation shaping (PCS). PCS aims at clos-
ing the shaping gap caused by using uniformly
distributed modulation symbols in channels for
which information theory shows non-uniformly
distributed signaling to be optimal. ESS is one
such PCS algorithm that sets itself apart as it op-
erates on a trellis representation of a subset of the
possible symbol sequences. ESS leads to an em-
pirical distribution of the symbols that closely ap-
proximates the optimal distribution for the addi-
tive white Gaussian noise (AWGN) channel. We
provide an open source implementation of this
algorithm in the compiled language Rust, as well
as Python bindings with which our Rust code can
be called in a regular Python script. We also com-
pare simulation results on the AWGN channel us-
ing our implementation with previous works on
this topic.

1. Introduction
The capacity of a channel is defined as the maximum
code rate with which reliable transmission (i.e. with
vanishing error probability) is possible. On an AWGN
channel, the capacity can be achieved with a continuous
and normally distributed channel input (Shannon, 1948;
Forney & Wei, 1989). Though this would be optimal
for a continuous channel input, a discrete set of chan-
nel input symbols is used in practical communication sys-
tems. Furthermore, many communication systems employ
a set of uniformly distributed, discrete symbols as chan-
nel input. As a result, the channel capacity can not be
achieved. The gap to capacity caused by using a subop-

Proceedings of the 13 th GNU Radio Conference, Copyright 2023
by the author(s).

timal channel input is called shaping gap and amounts to
0.255 bit/channel use (Gültekin et al., 2020; Forney et al.,
1984). In terms of signal-to-noise ratio (SNR), this corre-
sponds to a loss of 1.53 dB in energy efficiency.

Two major approaches to reduce the shaping gap are known
in literature (Sun & van Tilborg, 1993; Kschischang & Pa-
supathy, 1993): Geometric constellation shaping (GCS)
and PCS. While GCS changes the constellation symbols
and induces changes to most parts and algorithms in the
communication system, PCS alters the probability of oc-
currence of constellation symbols placed on a rectangular,
evenly spaced grid.

One difficulty with probabilistic constellation shaping is
the integration with forward error correction (FEC). The
de-mapping of received symbol sequences back to bit
strings is sensitive to wrongly detected symbols and does
not easily allow the use of soft information. In (Böcherer
et al., 2015), the probabilistic amplitude shaping (PAS)
architecture was introduced to mitigate this problem. It
works by shaping only the amplitude of transmit symbols
and the approximately uniformly distributed parity bits are
used to determine the sign. At the receiver the channel de-
coder can use soft information to recover the shaped bits
which were used to create the amplitude sequence. There-
fore the amplitude sequence can be regenerated error-free
and dematched to the original bit sequence. The PAS archi-
tecture combines the benefits of probabilistic shaping with
the benefits of using FEC. Because this is an important im-
provement over plain probabilistic shaping, for the remain-
der of this paper we will assume the use of PAS. Therefore,
further discussion will focus on mapping a sequence of bits
to a sequence of amplitudes rather than to a sequence of
symbols. We have to note that this approach only works
for distributions which are symmetric in their amplitudes.

PCS can be subdivided into direct and indirect methods.
Direct methods attempt to change the occurrence probabil-
ity of the transmit symbols to a given target distribution. A
prominent example of the direct method is constant com-
position distribution matching (CCDM). It works on fixed-
length symbol sequences by collecting into a code book

Introducing RSESS: An Open Source Enumerative Sphere Shaping Implementation Coded in Rust

only those sequences, where the relative frequency of oc-
currence of the symbols matches the desired probability of
occurrence. Bit strings are then unambiguously assigned
to the sequences in the codebook and the corresponding
sequence is sent in place of a given bit string. The de-
coder in the receiver uses the same codebook, such that it
can recover the original bit string from the received symbol
sequence. Using arithmetic coding (Schulte & Böcherer,
2016), the mapping and de-mapping of CCDM can be im-
plemented efficiently. Unfortunately, this straightforward
scheme suffers from significant rate losses if the sequence
length is short. Other direct methods, like multiset-partition
distribution matching (Fehenberger et al., 2019), try to al-
leviate this disadvantage. This paper focuses on indirect
PCS methods, which induce a desired probability distri-
bution through a sufficiently well-designed goal function.
In the context of Gaussian channels, one possible goal
function limits the energy of the fixed-length symbol se-
quences in the codebook. This approximates a Maxwell-
Boltzman distribution of the symbols for large sequence
lengths, which is the optimal distribution for discrete sym-
bols (Kschischang & Pasupathy, 1993). By including all
sequences with energy below a certain threshold, indirect
methods create the largest possible codebook for a given
average energy. As the shaping rate is proportional to the
logarithm of the codebook size, they suffer the minimal
rate loss achievable with a finite sequence length. By in-
terpreting a sequence of symbols as a multidimensional
vector, the energy of the sequence becomes the vectors’
square norm. All sequences with their energy lower than
the threshold would thus be contained in a multidimen-
sional sphere. Hence, these methods are also called sphere
shaping. There are multiple algorithms that use sphere
shaping, notably: Laroia’s first algorithm, shell mapping
(Laroia et al., 1994), and ESS (Willems & Wuijts, 1993).

ESS uses a trellis representation of the codebook and per-
forms the mapping to bit sequences based on a lexicograph-
ical ordering of the symbol sequences. This allows for a
slight reduction in complexity compared to Laroia’s first
algorithm and a substantial reduction in complexity com-
pared to shell mapping. A drawback of ESS is that the lex-
icographical indexing leads to slightly suboptimal results if
the number of sequences is limited to a power of two. This
is relevant because the number of bit sequences of a fixed
length is always a power of two. (Gültekin et al., 2020)

Notation:
Amplitude shift keying (ASK) is a modulation scheme that
encodes the information in multiple real symbols. Using in-
dividual ASK constellations for the inphase and quadrature
branch of an IQ modulator, quadrature amplitude modula-
tion (QAM) follows. As we are only interested in the am-
plitudes for shaping, we define the set of amplitudes for an

M -ASK system as

A = {1, 3, 5, ...,M − 1}.

A sequence of N amplitudes is denoted by aN ∈ AN . The
individual amplitudes in the sequences are denoted by

aN = (a0 a1 a2 · · · aN−1).

We use the squared norm of an amplitude sequence to de-
fine its energy

E(aN) = ||aN ||2 =

N−1∑
n=0

a2
n.

The remainder of this paper is organized as follows: We
first provide an overview of the ESS algorithm in Section 2.
A discussion of the optimum enumerative sphere shaping
(OESS) algorithm, which addresses the issue of ESS being
suboptimal for fixed bit length indexes, is added in Sec-
tion 3. The introduction and evaluation of RSESS, which
implements ESS and OESS, follows in Section 4. Finally,
the paper is summarized by Section 5.

2. Enumerative Sphere Shaping
In this section, we will briefly outline the algorithms used
in ESS for mapping from a bit-sequence to a symbol
sequence and vice versa. We like to refer the reader
to (Willems & Wuijts, 1993) for the original idea and
to (Gültekin et al., 2020) for a more detailed description.

2.1. Bit Sequence to Amplitude Sequence Mapping

To transform a stream of uniformly distributed bits into a
stream of non-uniformly distributed symbols, ESS uses a
fixed-to-fixed length mapping: A fixed-length sequence of
bits is transformed into a fixed-length sequence of sym-
bols. The possible symbol sequences are collected into
a codebook and, as the bits are uniformly distributed, all
symbol sequences in the codebook are equally likely. To
achieve a non-uniform symbol distribution, the symbol se-
quences in the codebook have to be chosen carefully. In
ESS, this is achieved by constructing a codebook of all
sequences with energy less than a fixed energy thresh-
old Emax. For an infinite sequence length, the symbol
distribution in this codebook converges to the Maxwell-
Boltzman distribution. In addition, the average energy
of the codebook is always minimal for its size, which
leads to minimal rate loss. The one-to-one mapping from
bit sequences to symbol sequences is obtained by lexico-
graphical ordering of the codebook. Lexicographical or-
dering is the method of ordering words in a dictionary
but applied to sequences of symbols. A sequence aN is
said to be larger than sequence bN if there exists some

Introducing RSESS: An Open Source Enumerative Sphere Shaping Implementation Coded in Rust

n, with 1 ≤ n ≤ N such that the symbols of both
sequences below index n are equal (ai = bi, i < n) and
its symbol at index n is larger than that of the other se-
quence (an > bn). For example, the first sequences in the
codebook for a sequence length N = 3 and 8-ASK are
(1 1 1), (1 1 3), (1 1 5), (1 1 7), (1 3 1), (1 3 3)
and so on. Having defined an ordering allows indexing
the sequences. The index i(aN) of a sequence aN is de-
fined as the number of sequences below it. Thus with the
example from above, we can state that i((1 1 1)) = 0,
i((1 1 3)) = 1, i((1 1 5)) = 2 and so on. Due to the
mapping being invertible, we can easily define the inverse
mapping aN (i) as the sequence with index i. Taking the
energy threshold into account, not all possible sequences
are contained in the codebook. Table 1 shows all ampli-
tude sequences in the codebook for N = 4, Emax = 28 and
8-ASK. Each index can be converted to its binary represen-
tation to obtain an invertible mapping from bit sequence to
amplitude sequence.

Table 1. Codebook for N = 4 and Emax = 28 using 8-ASK with
index for each sequence according to (Gültekin et al., 2020).

i aN (i) i aN (i) i aN (i)

0 (1 1 1 1) 7 (1 3 1 3) 13 (3 1 3 1)
1 (1 1 1 3) 8 (1 3 3 1) 14 (3 1 3 3)
2 (1 1 1 5) 9 (1 3 3 3) 15 (3 3 1 1)
3 (1 1 3 1) 10 (1 5 1 1) 16 (3 3 1 3)
4 (1 1 3 3) 11 (3 1 1 1) 17 (3 3 3 1)
5 (1 1 5 1) 12 (3 1 1 3) 18 (5 1 1 1)
6 (1 3 1 1)

2.2. Bounded Energy Trellis

Storing the codebook in a lookup table (LUT), as in the
example in Table 1, quickly becomes impractical for large
codebooks. However, it is not necessary to explicitly store
the codebook; we only require a fast way of finding how
many sequences are lexicographically below a given se-
quence. This can be achieved by a bounded energy trellis.
It consists of nodes corresponding to a number of ampli-
tudes n and accumulated energy e. Each node T e

n holds the
number of different sequences that are still possible with
n fixed amplitudes which result in the accumulated energy
e. For example, by using the same base parameters as for
Table 1 the node T 19

3 has two possible continuations i.e.
T 19
3 = 2. As n = 3 amplitudes are fixed, only N − n = 1

amplitude can be varied. This amplitude could take the
values 1 or 3. However, if it takes the value 5 or higher
the total energy e + 52 = 19 + 52 = 44 would exceed the
maximum energy Emax = 28. Thus the number of possi-
ble continuations is two. An example trellis for N = 4,
Emax = 28 and 8-ASK can be seen in Figure 1. It holds

T e
n
e

1
25

1
26

1
27

1
28

3
18

2
19

1
20

7
9

4
10

2
11

1
12

19
0

11
1

6
2

3
3

1
4

1

3

5

n = 0 n = 1 n = 2 n = 3 n = 4

Figure 1. Bounded energy trellis diagram for N = 4 and Emax =
28 and 8-ASK following (Gültekin et al., 2020).

the same codebook and results in the same mapping as Ta-
ble 1. The number of accumulated energy values can be
reduced by observing that the energy added by any ampli-
tude can be written in the form 1 + k · 8. For instance, the
amplitude 5 has the energy 52 = 25 = 1 + 3 · 8. Thus the
accumulated energies after n fixed amplitudes will always
be n plus a multiple of 8 and trellis nodes are only needed
for these values. Of course, there must be nodes for n = 0
to n = N − 1 fixed amplitudes. There are also nodes for
n = N fixed amplitudes. Trivially, all of these nodes have
the value 1 and the remaining values in the trellis are built
up backwards from these. Assuming we have the values
in all nodes with n + 1 fixed amplitudes, the value of a
node with n fixed amplitudes is the sum of all values from
nodes with n + 1 fixed amplitudes which are reachable by
adding a single amplitude to the node. Adding an ampli-
tude to a node means adding its energy to the accumulated
energy of the node and corresponds to appending the am-
plitude to the sequences represented by this node. This rule
holds because the value of a node is the number of different
sequences possible with it as the starting point. Naturally,
the number of continuations is the sum of the number of
continuations after each possible next amplitude. By lever-
aging the fact that the nodes with n = N are indeed all
known to be 1, all values in the trellis can thus be calcu-
lated by applying

T e
n =

∑
a∈A

T e+a2

n+1 (1)

recursively starting from n = N − 1 and down to n = 0.

2.3. Encoding and Decoding via the Trellis Diagram

Each amplitude sequence can be interpreted as a path
through the bounded energy trellis: each transition in the

Introducing RSESS: An Open Source Enumerative Sphere Shaping Implementation Coded in Rust

trellis is equivalent to appending an amplitude to a se-
quence represented by a node. For example, the ampli-
tude sequence (1 3 3 1) corresponds to the path T 0

0 →
T 1
1 → T 10

2 → T 19
3 → T 20

4 in the trellis diagram in Fig-
ure 1. Indexing the sequences in the trellis makes use of
this path representation and the definition of the index be-
ing the number of lexicographically lower sequences. Am-
plitude sequences are constructed from left to right, there-
fore the sequences have their more significant amplitudes
added first.

The index of a given sequence is defined by the lexico-
graphical ordering but the sequence for a given index is
only defined as the inverse operation. Therefore, it is best
to discuss the decoding algorithm (finding the index of a
given sequence) first. Indexing a sequences in the trellis
makes use of its path representation by following the path
one step at a time. This corresponds to “building” the se-
quence by appending one amplitude in each step. By keep-
ing track of the number of sequences left lexicographically
below in each step, the sum of lower sequences can be com-
puted, which is the index. The number of sequences left
below in each step is the number of sequences possible if a
lower amplitude would be appended instead of the next one
in the sequence. For each lower amplitude a, this number
can easily be retrieved from the trellis diagram as it is the
value of the trellis node reached if the lower amplitude a
is used next. Thus if we are currently in the node T en

n , the
number of sequences possible if amplitude a is appended
equals T en+a2

n+1 . Algorithm 1 accumulates the number of
possible sequences for each lower amplitude in each step
to compute the index of a given sequence. For the chosen
system parameters in Figure 1, the obtained indices corre-
spond to the codebook in Table 1.

Algorithm 1 Mapping Amplitude Sequence to Index
input aN

en =

{
0, n = 0∑n−1

j=0 a2n, n ∈ {1, ..., N − 1}
i = 0
for n = 0 to N − 1 do

for a ∈ A; a < an do
i = i+ T en+a2

n+1

end for
end for

output i

Encoding, which is mapping an index to an amplitude se-
quence can be achieved using Algorithm 2. If the path of a
full length amplitude sequence contains a node T e

n, it also
contains one of the T e

n continuations of this node. The se-
quence cannot be lexicographically greater than all its con-
tinuations after the amplitude in location n. Thus the index

of a sequence with node T e
n in its path is upper bounded by

T e
n − 1 plus the number of sequences left lexicographically

below in the path leading up to node T e
n. Finding the cor-

rect next node now becomes a matter of finding the lowest
next amplitude such that the value of the next node plus
the number of lexicographically lower sequences is greater
than the index. For example, assume we are searching for
the sequence belonging to index i = 13 using the trellis in
Figure 1. We know it starts with (3 1 ? ?) and j = 11
sequences are lexicographically lower than this start of the
sequence. Following the path or calculating the accumu-
lated energy (32 + 12 = 10) shows that we are on a path
that currently ends on node T 10

2 . If the next amplitude is
chosen to be 1, the next node is T 11

3 . This will lead to an in-
dex which is too small as j+T 11

3 = 11+2 = 13 ≤ 13 = i.
Thus, the next larger amplitude 3 must be tried. As all se-
quences continuing with 1 are lexicographically below any
sequence continuing with a 3, these must be added to the
number of sequences left below. The variable j is thus
updated by adding T 11

3 = 2, which is the number of se-
quences continuing with amplitude 1. The current index j
now equals 11 + 2 = 13. If the next amplitude is a 3, the
next node is T 19

3 . Now the index i = 13 is smaller than
j + T 19

3 = 13 + 2 = 15 and the next amplitude is chosen
to be 3. Checking Table 1 shows that the correct sequence
with index i = 13 is (3 1 3 1), which does indeed have a
3 in the location in question. Algorithm 2 starts from the
known starting node T 0

0 and applies this method iteratively
to compute the full sequence.

Algorithm 2 Mapping Index to Amplitude Sequence
input i

aN = (a0 a1 · · · aN−1) ∈ AN

e = 0
j = 0
for n = 0 to N − 1 do
a = 1
while i ≥ j + T e+a2

n+1 do
j = j + T e+a2

n+1

a = next larger value in A
end while
an = a
e = e+ a2

end for
output aN

2.4. Amplitude Distribution and Average Energy

For the purpose of evaluating the resulting code book, two
metrics are especially interesting: the amplitude distribu-
tion and the average symbol energy. The amplitude dis-
tribution is defined as the probability of finding a given
amplitude in a random location in a sequence chosen ran-

Introducing RSESS: An Open Source Enumerative Sphere Shaping Implementation Coded in Rust

domly from the codebook. As ESS is an indirect method
and thus uses no predefined amplitude distribution, the am-
plitude distribution must be calculated from the codebook.
As shown in (Gültekin et al., 2020), the amplitude distribu-
tion can be calculated using the trellis representation via

PA(a) =
T a2

1

T 0
0

. (2)

The average energy can be computed by averaging the en-
ergy of amplitude sequences in the codebook. It is of inter-
est because it directly influences the signal-to-noise ratio in
the case of an AWGN channel.. Given the amplitude distri-
bution, the average energy

Eav = N
∑
a∈A

PA(a)a
2 (3)

can trivially be computed using the energies of the ampli-
tudes and the sequence length (Gültekin et al., 2020).

3. Fixed-Length Messages and Optimum ESS
In the general case, the number of sequences in the code-
book is not a power of two. This is disadvantageous as
in a fixed-to-fixed distribution matcher, a fixed number of
bits should be mapped to these sequences and the number
of possible bit strings of any length is always a power of
two. Using the binary interpretation of the bit stream as in-
dex, sequences that have an index higher than 2Nbit − 1 are
not used. For large codebooks this disadvantage becomes
negligible. For very small codebooks, however, ESS be-
comes less efficient than other methods. As the sequences
are ordered lexicographically and not by their total energy,
the sequences with the highest indices do not necessarily
have the highest energy. This removes lower energy se-
quences from the codebook and the average energy is no
longer minimal. The rate loss incurred by ESS compared to
an optimal minimum average energy codebook, is hereby
increased. OESS as proposed in (Chen et al., 2022) allevi-
ates this problem.

As multiple energy thresholds Emax can lead to the same
possible bit string length, OESS is defined for the lowest
Emax that leads to a given bit string length. The key idea
of OESS is to use two trellis diagrams instead of only one.
One trellis diagram is a normal bounded energy trellis but
with the threshold Emax − 8. As discussed in the previous
section, the energy of amplitude sequences is quantized to
multiples of eight plus an offset. Therefore, the first trel-
lis diagram, called the full trellis in (Chen et al., 2022),
contains all sequences except for those with maximum en-
ergy content Emax. The second trellis diagram is called the
partial trellis and contains only the sequences with energy
equal to Emax. A trellis like this can easily be constructed

by altering the values of the final trellis nodes during ini-
tialization. For a regular ESS trellis, all nodes with n = N
are initialized to 1. In the partial trellis used by OESS, only
TEmax
N is set to 1 while all other nodes are set to 0. Applying

(1) in the regular way calculates all other node values. By
splitting the sequences with maximum energy into a new
trellis, these are enumerated separately. Mapping an index
to a sequence now works by first selecting the appropriate
trellis. If the index is lower than the number of sequences
in the full trellis, a sequence from the full trellis is chosen
using Algorithm 2. Otherwise a local index for the partial
trellis is created by subtracting the number of sequences in
the full trellis from the index. Algorithm 2 is then used
on the partial trellis with the local index to find the corre-
sponding amplitude sequence with energy Emax. This way
the highest indices correspond to sequences with maximum
energy. Therefore, removing sequences which are located
in the partial trellis will reduce the average energy. De-
mapping works in a similar way as the mapping. First, the
energy of the sequence is calculated. If it is below the maxi-
mum energy, the full trellis is used with Algorithm 1 to find
the index. Should the sequence have maximum energy, the
local index is calculated from the partial trellis using Al-
gorithm 1 and the number of sequences in the full trellis
is added to it, which is necessary to obtain the final index
from the local index computed with the partial trellis.

To calculate the amplitude distribution in OESS, we are not
able to use the simple form (2). Instead, we need to apply
a calculation that takes into account that some of the se-
quences are removed from the codebook, therefore chang-
ing the amplitude distribution. Calculation of the ampli-
tude distribution for ESS with a limited codebook size and
calculation of the amplitude distribution for OESS can be
found in (Chen et al., 2022).

4. Introducing RSESS
Our contribution is a free and open source implementa-
tion of the ESS and OESS algorithms. We used the pro-
gramming language Rust to implement the presented al-
gorithms. We distribute the code in the form of a Rust
crate named RSESS on crates.io. The full source code is
also available at https://github.com/kit-cel/
rsess. Encoding and decoding between indices and am-
plitude sequences form the core of RSESS. For analysis,
calculation of the amplitude distribution is implemented
both for the simple case in which all sequences are used
as well as for the more complex cases in which only in-
dexes up to a power of two are used or the amplitude dis-
tribution for OESS. Calculation of the average energy is
also implemented as well as the calculation of the energy
distribution, which gives the probabilities for sequences of
specific energy. The programming interfaces to work with

https://github.com/kit-cel/rsess
https://github.com/kit-cel/rsess

Introducing RSESS: An Open Source Enumerative Sphere Shaping Implementation Coded in Rust

50 1,000 2,000 3,000

102

103

104

Sequence length

R
un

tim
e

(m
s)

ESS RSESS
OESS RSESS
ESS PyRSESS
OESS PyRSESS

Figure 2. Encoding times over varying sequences length for
10000 sequences using our framework

50 1,000 2,000 3,000
101

102

103

104

Sequence length

R
un

tim
e

(m
s)

ESS RSESS
OESS RSESS
ESS PyRSESS
OESS PyRSESS

Figure 3. Decoding times over varying sequence length for 10000
sequences using our framework

ESS or OESS are identical. However, the OESS imple-
mentation features an additional function which can find
the Emax values for which OESS is defined. To facilitate
the use in Python scripts, Python bindings for RSESS are
provided in a package named PyRSESS. The source code
resides in the same repository, but PyRSESS is also pub-
lished to PyPI. The Python bindings cover the full scope of
the Rust library.

Using a Rust or Python package manager, either RSESS
or PyRSESS is easy to install. In both programming lan-
guages, we expose an object-oriented interface with one
class for ESS and OESS each. Objects instantiated from
these classes can be used to encode and decode bit strings
into amplitude sequences and vice-versa. While RSESS
uses the arbitrarily sized integers from the rug Rust crate
as indices, the Python bindings use arrays/lists containing
zeros and ones to model data bits. Usage examples for both
RSESS and PyRSESS are also made available at https:
//github.com/kit-cel/rsess_examples.

The main reason for implementing the ESS algorithm in
the compiled language Rust was the goal to have fast en-
coding and decoding. Simulations regularly calculate thou-

50 1,000 2,000 3,000
100

101

102

103

Sequence length

M
em

or
y

us
ag

e
(M

B
)

ESS RSESS
OESS RSESS
ESS PyRSESS
OESS PyRSESS

Figure 4. Resident memory over varying sequence lengths for
10000 sequences using our framework

sands of transmissions over the simulated channels and a
fast implementation is invaluable in this situation. In ESS
encoding/decoding, speed mainly depends on the ampli-
tude sequence length N , the energy threshold Emax, and
the data itself. Together, the combination of N and Emax
determines the number of data bits Nbits. For the following
benchmarks a constant shaping rate rsh = N

Nbits
= 1.5 and

the minimum Emax possible with this rsh is used. The use
of 10000 random data sequences allows statements about
the data-independent average encoding / decoding behav-
ior. This allows the amplitude sequence length N to be the
only parameter influencing algorithm complexity. Figure 2
shows the duration of encoding 10000 random bit strings
for different values of N and Figure 4 shows the duration
of decoding the resulting amplitude sequences back into
bit strings. As the main advantage of the ESS / OESS al-
gorithm is its low rate loss for short block lengths, perfor-
mance for short amplitude sequence lengths is especially
relevant. Decoding times for 10000 sequences are below
one second, even for very long sequence lengths up to
N ≈ 1300. Using the Python bindings PyRSESS, de-
coding times stay below one second for sequence lengths
up to N ≈ 600. Encoding long sequences with lengths
of N ≈ 500 is slower but still below one second. The
Python bindings only keep encoding below one second for
medium block lengths below N ≈ 300. In general, de-
coding is faster than encoding and pure Rust is faster than
using the Python bindings. Another limiting factor may
be the memory space used to store the trellis. However,
our benchmarks in Figure 4 show that using pure Rust,
this is not the case as the total resident process memory
does not exceed 100MB even for long sequences up to
N = 1600. All memory measurements were done directly
after creating the trellis and captured the resident memory
of the whole process, not only the trellis. Unlike the en-
coding/decoding times, the memory usage values of ESS
and OESS differ. This is to be expected as OESS uses two
trellises while ESS only uses one. The memory usage of

https://github.com/kit-cel/rsess_examples
https://github.com/kit-cel/rsess_examples

Introducing RSESS: An Open Source Enumerative Sphere Shaping Implementation Coded in Rust

12 12.5 13 13.5 14 14.5
3.6

3.8

4

4.2

4.4

Es/N0 (dB)

A
IR

N
(b

it/
sy

m
bo

l)

ESS N = 20

ESS N = 40

OESS N = 20

OESS N = 40

Uniform
Capacity

Figure 5. AIR over varying Es/N0 (reproducing Figure 16
in (Chen et al., 2022))

PyRSESS is much higher than that of the pure Rust library
and even exceeds 2GB for ESS with the extreme block
length of N = 3200. OESS has even higher memory usage
exceeding 4GB, however the advantage of OESS over ESS
already vanishes for far lower block lengths. We would ad-
vise against the use of PyRSESS for simulations with ex-
tremely long block lengths on hardware with limited mem-
ory resources.

Multiple simulations over an AWGN channel were con-
ducted using PyRSESS with different sequence lengths and
energy thresholds. Most notably, one simulation aimed
at validating the achievable information rate (AIR) results
for ESS, OESS, and CCDM at different signal-to-noise
ratios published in (Chen et al., 2022). The AIR is the
maximum information rate that can reliably be transmit-
ted over a channel assuming optimal channel coding and
can be estimated from the soft information before channel
decoding. Using PyRSESS for the simulation of ESS and
OESS, we could replicate the results published in Figure 16
in (Chen et al., 2022). Our results can be seen in Figure 5.
Apart from validating the research by Yizhao Chen and col-
leagues, this also demonstrates that our implementations of
the ESS and OESS algorithms are correct.

5. Conclusion
We have provided a short overview of probabilistic shaping
and the ESS algorithm to then introduce our contribution:
a free and open source implementation of ESS and OESS
called RSESS. RSESS is a Rust library and also has Python
bindings called PyRSESS. We have shown that RSESS is
fast and memory efficient even for large simulations, while
PyRSESS is an easy-to-use option for normal simulations
but is less efficient and becomes demanding for very large
simulations. Finally, the functionality of our implementa-
tion could be verified by replicating literature results in the
short block length regime. This makes RSESS a viable tool
for research and development in the field of probabilistic
constellation shaping.

Acknowledgment
This work has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 101001899).

References
Böcherer, Georg, Steiner, Fabian, and Schulte, Patrick.

Bandwidth efficient and rate-matched low-density
parity-check coded modulation. IEEE Transactions on
Communications, 63(12):4651–4665, December 2015.
doi: 10.1109/TCOMM.2015.2494016.

Chen, Yizhao, Chen, Junda, Li, Weihao, Zhang, Ming-
ming, Liu, Deming, and Tang, Ming. On optimization
and analysis of enumerative sphere shaping for short
blocklengths. Journal of Lightwave Technology, 40(22):
7265–7278, November 2022. doi: 10.1109/jlt.2022.
3201901.

Fehenberger, Tobias, Millar, David S., Koike-Akino, Toshi-
aki, Kojima, Keisuke, and Parsons, Kieran. Multiset-
partition distribution matching. IEEE Transactions on
Communications, 67(3):1885–1893, March 2019. doi:
10.1109/TCOMM.2018.2881091.

Forney, G. David and Wei, Lee-Fang. Multidimensional
constellations. I. Introduction, figures of merit, and gen-
eralized cross constellations. IEEE Journal on Selected
Areas in Communications, 7(6):877–892, August 1989.
doi: 10.1109/49.29611.

Forney, G. David, Gallager, Robert G., Lang, Gordon R.,
Longstaff, Fred M., and Qureshi, Shahid U. Efficient
modulation for band-limited channels. IEEE Journal
on Selected Areas in Communications, 2(5):632–647,
September 1984. doi: 10.1109/jsac.1984.1146101.

Gültekin, Yunus Can, van Houtum, Wim J., Koppelaar,
Arie G. C., and Willems, Frans M. J. Enumerative sphere
shaping for wireless communications with short pack-
ets. IEEE Transactions on Wireless Communications,
19:1098–1112, 2020. doi: 10.1109/twc.2019.2951139.

Kschischang, Frank R. and Pasupathy, Subbarayan. Opti-
mal nonuniform signaling for Gaussian channels. IEEE
Transactions on Information Theory, 39(3):913–929,
May 1993. doi: 10.1109/18.256499.

Laroia, Rajiv, Farvardin, Nariman, and Tretter, Steven A.
On optimal shaping of multidimensional constellations.
IEEE Transactions on Information Theory, 40(4):1044–
1056, July 1994. doi: 10.1109/18.335969.

Introducing RSESS: An Open Source Enumerative Sphere Shaping Implementation Coded in Rust

Schulte, Patrick and Böcherer, Georg. Constant compo-
sition distribution matching. IEEE Transactions on In-
formation Theory, 62(1):430–434, January 2016. doi:
10.1109/TIT.2015.2499181.

Shannon, C. E. A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379–423, July
1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Sun, Feng-Wen and van Tilborg, Henk C. A. Approach-
ing capacity by equiprobable signaling on the Gaussian
channel. IEEE Transactions on Information Theory,
39(5):1714–1716, September 1993. doi: 10.1109/18.
259663.

Willems, Frans M. J. and Wuijts, Jos J. A pragmatic ap-
proach to shaped coded modulation. In IEEE Sympo-
sium on Communications and Vehicular Technology in
the Benelux, 1993.

