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Facility for Antiproton and Ion Research -  
“The Universe in the Laboratory”

Cutting-edge science and technology 
▪ESFRI Landmark near Frankfurt, Germany 

▪Top priority for European Nuclear Physics Community 

▪International: 50 countries, 3000 researchers 

▪Diverse community from atomic to particle physics 

▪High intensity+precision+diversity+parallel operation 

▪Monolitic and modular experimental setups

203x+THEORY and BEAM physics



A confession…

• My background: physicist with “self-educated” 
(software) engineering skills (if any)


• GNURadio4.0 only learned about it recently   
(via this event)
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2. Who says that AI cannot be creative?



This talk, the objectives…

• Science & Tech at GSI/FAIR: the why, the how, the what?


• (Typical) example case based on personal experiences  


• Lessons from the past, developments in the present, towards 
the needs and challenges for the future
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Nuclear
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Proton 
Mass 940 MeV/c2 = 1.7x10-27 kg

Radius ~0.83 fm = 0.83x10-15 m

Mass density (mass/volume):

~1018 kg/m3

density of Earth                    ~5x103 kg/m3

density of a neutron star is  ~1017    kg/m3
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Proton = three light quarks? 

Higgs: 3 x quark-mass  10 MeV/c2≈ Reality: proton mass  940 MeV/c2≈

u d
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  Strong interaction = mass !



Origin of mass?


Properties of hadrons?


Formation of hadrons?


Underlying symmetries
+Higgs

Quantum Chromo Dynamics

50 years of QCD!
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An international scientific collaboration

“matter at extremes”
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Baryonic matter at 
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Tetraquark
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Dibaryon

Glueball
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proton, neutron, …

pion, kaon, …

Baryon

Meson

Exotic form of hadrons

(PANDA)

…QCD matter at extremes

Nuclei at the edge 
of stability 

(NUSTAR)
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Facilities at FAIR

Compressed Baryonic Matter (CBM)

p, d…(SIS100)

The HADES Spectrometer
High-Acceptance Di-Electron Spectrometer
Versatile detector operating at GSI at SIS18 since 2001 allowing to study both hadron
and heavy-ion physics

• Precision spectroscopy of e+e− pairs and charged hadrons and calorimetry
• Perfect for hyperon structure studies

• pp, heavy ion (e.g. Ag-Ag, Au-Au) and pion induced reactions
• Hyperons are produced and used as probes for in-medium properties

• Acceptance of detector: ∼15-85◦ + extended with a forward detector at lower angles for
pp data @ Tbeam = 4.5 GeV

• Important for detection of hyperon decay products

ΛK0
S analysis by S. Pattnaik (GSI)

Jenny Taylor (GSI) Exclusive Hyperon Reconstruction at HADES Winter Meeting, 2024 2 / 14

High Acceptance Di-Electron 
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Johan Messchendorp – Conceptual 
Design for FAIR Computing

Green IT Cube

In operation since 2016

PUE < 1.07 
4 MW cooling 
capacity for 768 racks on 6 floors

Radoslaw Karabowicz - Introduction to FAIR ComputingFAIR & GSI GmbH 4Green IT Cube (HPC)

35 PB/year (60 PB) 
300.000 (54.000) cores

500 GPUs


antiProtons ANnihilations at 
DArmstadt (PANDA)

~2032

p̄, p…(HESR)
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Mysterious “XYZ” hadrons

“Tetraquarks”

“Pentaquarks”

Composition  
remains puzzling!
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The “how” and why “FAIR”? 
Key to discovery:                 precision

Resolution Statistics

Accurate mass 
measurements

ΔM/M ≈ 10−5 Storage rings

High sensitivity to rare 
production processes

σsens < nb High beam intensities

& detection capabilities
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High Energy Storage Ring at FAIR

Stochastic cooling: 


Accumulation:  antiprotons

Δp/p ≈ 3 × 10−5

1011 →L ≈ 2 × 1032 cm−2s−1

p̄ + p → → π+π−e+e−

beam 
profile

measured  
yield

resonance  
cross section

Mass

Anti-Protons as precision probes

Simon van der Meer

Stochastic cooling

Simon van 
der Meer

1984



Needles-in-a-haystack
p Production Cross Sections 

K. Götzen Oct 2012, GSI 13 

PANDA 

50 

p Production Cross Sections 

K. Götzen Oct 2012, GSI 14 

100 mb 

10 mb 

1 mb 
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10 μb 

1 μb 

100 nb 

10 nb 

1 nb 

ηc 

χc0 

χc2 

ηcπ0 

Hybrids 

Glueballs 

X(3872) 

Cross section expectations for: 
 
• Glueballs, light hybrids 
• rates comparable to  
  light hadrons 

 
• Charmed hybrids/molecules 
• rates comparable to  
  charmed hadrons 

 

p pLab [GeV/c] 

1 10 102 103 104 105 106 107 108 

1/10.000 1/10.000.000 
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THE O2 SOFTWARE 
FRAMEWORK AND GPU 
USAGE IN ALICE ONLINE 

AND OFFLINE 
RECONSTRUCTION IN RUN3

David Rohr, Giulio Eulisse  
for the ALICE Collaboration

Detector

Feature extraction

Online computing
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Evolution in hadron physics experiments
Andreas Herten (FZJ), 
Klaus Goetzen (GSI)

2009-202x

2003-202x

>2032

~25 years ago…



Bigger shovel?

Paradigm shift in data processing!

Moore’s law



Free-streaming online data-processing
No hardware trigger, software driven



Intelligent in-situ data processing

107 /sec.

kinematic 
reconstruction

<104 events/sec.

track fitting

particle 
identification

track finding

vertex finding

feature extraction

Data rate

Algorithm complexity

FPGA CPU/GPU

fast/robust

precise

vertex fitting

cluster finding

event building
4.3. PANDA EMC READOUT CHAIN

(a) (b)

FPGA

Optical link 

connection

Readout channels

Figure 4.11: Photograph of (a) Struck SADC [104] and (b) The prototype SADC
specially designed for the PANDA EMC [73,105].

Figure 4.12: Schematic diagram of on-line Feature-Extraction stages of digitized
signals.

55
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Online  offl
ine computing

≈
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…how to tackle the data challenges in the field

Federation in hardware & software
Federation in on- and offline computing
Federation in distributed computing
Federation between IT and research
Federation in data management
Federation in computing R&D
…



Federation
…in software design

A couple of (cultural) facts to realise:



Federation
…in software design

A couple of (cultural) facts to realise:

1. Progress using the software needs to be fast (low threshold)



Federation
…in software design

A couple of (cultural) facts to realise:

1. Progress using the software needs to be fast (low threshold)

2. There is no clear distinction between users and developers



Federation
…in software design

A couple of (cultural) facts to realise:

1. Progress using the software needs to be fast (low threshold)

2. There is no clear distinction between users and developers

3. Code often developed by temporary physicists (PhD, PD)



Federation
…in software design

A couple of (cultural) facts to realise:

1. Progress using the software needs to be fast (low threshold)

2. There is no clear distinction between users and developers

3. Code often developed by temporary physicists (PhD, PD)

4. Reinventing the wheel is unfortunately a common practise



Federation
…in software design

A couple of (cultural) facts to realise:

1. Progress using the software needs to be fast (low threshold)

2. There is no clear distinction between users and developers

3. Code often developed by temporary physicists (PhD, PD)

4. Reinventing the wheel is unfortunately a common practise

5. Software developments are evolutionary driven



Federation
…in software design

A couple of (cultural) facts to realise:

1. Progress using the software needs to be fast (low threshold)

2. There is no clear distinction between users and developers

3. Code often developed by temporary physicists (PhD, PD)

4. Reinventing the wheel is unfortunately a common practise

5. Software developments are evolutionary driven

6. Recognition of software R&D (still) lacks behind other R&D
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Software frameworks
…an absolute key element 

•Code Reusability 

•Productivity Boost & Accessibility 

•Scalability and Flexibility 

•Security & Consistency 

•Community Support & Documentation 

•Maintenance and Debugging 

•Quality and Performance 

Well, guess I don’t have to explain this to the GNUradio community ;-) 
The real question is how to make a framework successful (lifetime, usage, …)!



ROOT
…since 1996 “Rapid Object-Oriented Technology”

• Software framework born at CERN

• Available under (L)GPL

• Successor of PAW (fortran)

• Storage, processing, visualisation, 

analysis of scientific data

• Designed to cope with LHC data (>PB/yr)

• Object oriented (C++)

• Interactive usage with Cling C++ 

interpreter; interface to Python

• Huge community beyond HEP 

• Windows, OSX, Linux, Solaris, IBM AIX; 

IA-32, x86-64

Rene Brun

Fons Rademakers



FAIRROOT
…since 2003

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Birdseye View of the Design

FairRoot a success   
● Used for simulations and design studies for FAIR and Non-

FAIR experiments  
● It enhanced the synergy between the different groups
● Many useful tools where developed within FairRoot

1003.05.23

•Experiment design, 
feasibility MC studies, and 
data analysis of exps! 

•Generate(d)s lots of synergy 
between different groups at 
FAIR and beyond 

•The proven basis for 
successful “federated” 
computing! 

Mohammad Al-Turany (GSI) et al.
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FAIR meets ALICE (CERN)

ALICE O2: 
   - DAQ, online & offline with one framework

FAIRROOT: 
   - Concurrency, merging online and offline  

ALFA ALFA: 
   - Join forces in a combined framework!  

+

=
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Tackling online-data processing
…a federated spin-off

Mohammad Al-Turany (GSI) et al.

• BSD sockets API 
• Bindings for 30+ languages 
• Lockless and Fast 
• Automatic re-connection  
• Multiplexed I/O

FAIRMQ: 
• Based on “actor” model of concurrency 
• Asynchronous messaging toolkit
• Broad scala of messaging pattern
• Fault tolerant, scalable, and simplified concurrency
• Commun. layer: 0MQ, shared memory, and Libfabric

FAIR meets ALICE (CERN)

ALFA

Actor Model

03.05.23 22

Standalone processes ("devices") perform a task (e.g. track 
finding) and communicate with each other via messages 
(mediated by a queue).

M. Al-Turany

ALFA building block (FairMQ Devices) 
• Device takes/passes ownership of data 
• Framework user sees only the callback to his algorithm
• Different channels can use different transport engines 

User 
Algorithm

Ch_1
Ch_2

….
Ch_n

Ch_1
Ch_2

….
Ch_m

FairMQDevice

Input 
Data

Output 
Data

03.05.23 24M. Al-Turany

Hewitt, Bishop, Steiger,

“A Universal Modular Actor 
Formalism for Artificial Intelligence”,

1973



Alice in RUN3
50 kHz of continuous readout data. 
90 Gbytes/s to Storage (50 PB/y)

03.05.23 14M. Al-Turany

Tackling online-data processing
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David Rohr, Giulio Eulisse, ALICE
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50 kHz of continuous readout data. 
90 Gbytes/s to Storage (50 PB/y)

03.05.23 14M. Al-Turany

Tackling online-data processing
…a federated spin-off

David Rohr, Giulio Eulisse, ALICE

O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Framework & 
Data Processing Layer (DPL)

Hides the hiccups of a distributed system, presenting a familiar "Data Flow" system. 
➤ Reactive-like design (push data, don't pull) 
➤ Implicit workflow definition via modern C++ API. 
➤ Core common tasks: topological sort of dependencies, deployment of generated topologies, data lifecycle 

handling, service management, common infrastructure services, plug-in manager. 
➤ Integration with the rest of the production system, e.g. Monitoring, Logging, Control.

11

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends: 
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. 
➤ ROOT based serialisation. Useful for QA and final results. 
➤ Apache Arrow based. Backend of the analysis data model and for integrating with other tools. 
➤ We contributed the RDataFrame Arrow backend to ROOT.

Transport Layer: ALFA / FairMQ1

➤ Joint collaboration with FAIR and GSI 
➤ Standalone processes (devices) for deployment flexibility & resilience 
➤ Message passing as a parallelism paradigm 
➤ Shared memory backend for reduced memory usage and improved performance 
➤ Seamless remote communication
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10.5.2023 David Rohr, drohr@cern.ch 43

- No trigger, all Pb-Pb collisions recorded
- Continuous readout recording time frames instead of events
- 100x more collisions, much more data
- Cannot store all raw data → online compression
→ Use GPUs to speed up online (and offline) processing

- Native data unit is a time frame:
all data from a configurable period of data, currently 2.8 ms
(until 2023 was 11 ms)

- Majority of the processing in the EPN online computing farm
- Synchronous processing during data taking

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb., tracks of different collisions shown in different colors.

ALICE in Run 3

Data links from detectors

Disk buffer

Ru
n 

3 
fa

rm

Synchronous processing
- Local processing
- Event / timeframe building
- Calibration / reconstruction

Asynchronous processing
- Reprocessing with full 

calibration
- Full reconstruction

Permanent storage

Compressed 
Raw DataReconstructed Data

3.5 TB/s

Readout nodes
< 900 GB/s

Du
rin

g
no

 b
ea

m

~ 130 GB/s

Du
rin

g
Da

ta
 ta

ki
ng

FLP

EPN

EPN

Heavy-ion rates ~50 kHz 

Offline and Online based on same architecture



Tackling online-data processing
…a federated spin-off

Norbert Hermann, CBM

CBM

31.05.2023 N.Herrmann, 12. RRB meeting, June2023 18

The free-streaming CBM DAQ and data processing 
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The free-streaming CBM DAQ and data processing 

31.05.2023 N.Herrmann, 12. RRB meeting, June2023 20

mCBM: Λ reconstruction in Ni+Ni collisions at 1.93 AGeV

Data, run 2391, total run duration 1:57h
4x to 5x107 ions per spill, 10s spill
400 - 500 kHz average collision rate

MC , identical reconstruction chain
100 M generated events
105 events / s 
63.7 M triggered events

preliminarypreliminary
data analysis 
in progressrare signal reconstructed,

- milestone reached !
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(This is equivalent to say that the operator is connected) but 
also that 1) the sense of gray-level variation between n and n r 
has to be preserved and 2) the variation interval between 
c 1 f 2 3n 4  and c 1 f 2 3n r 4  must contain the variation interval 
between f 3n 4 and f 3n r 4. 

The theoretical properties of levelings are studied in [5] and 
[6]. In particular, it has been shown that any opening or closing 
by reconstruction is a leveling. If c1, c2 are levelings, their com-
position c2c1 is also a leveling. Finally, if 5ci6 are levelings, their 
supremum — i ci, and infimum – i ci, are levelings. 

The most popular technique to create 
levelings relies on the self-dual reconstruc-
tion process described next. 

DEFINITION 5 

Self-Dual Reconstruction 
If f  and g are two images (respectively 
called the “reference” and the “marker” 
image), the self-dual reconstruction rD 1g|f 2  
of g with respect to f  is given by 

 gk 5 eC 1gk21 2 — 3dC 1gk21 2 – f 4
 5 dC 1gk21 2 – 3eC 1gk21 2 — f 4
 1equivalent expression 2  and
  r D 1g|f 2 5 limkS` gk, (10) 

where g0 5 g and dC and eC are respectively the dilation and the 
erosion with the flat structuring element defining the connec-
tivity (3 3 3 square or cross). 

In fact, the self-dual reconstruction is the antiextensive 
reconstruction of (2) for the pixels where g 3n 4 , f 3n 4 and the 
extensive reconstruction of (3) for the pixels where 
f 3n 4 , g 3n 4. In practice, the self-dual reconstruction is used to 
restore the contour information after an initial filtering 
 process. In other words, the reconstruction allows the creation 
of a connected version rD 1c 1 f 2 |f 2  of any filter c 1 f 2 . 

A typical example of initial filter c 1 f 2  is an alternating 
sequential filter 

 c 1 f 2 5 whk
ghk

whk21
ghk21

cwh1
gh1
1 f 2 ,  (11)

where whk
 and ghk

 are respectively a closing and an opening 
with a structuring element hk. In [26], the initial filter is a 
linear low-pass filter based on the convolution with a 
Gaussian impulse response. As can be seen in Figure 7, the 
low-pass filter removes most of the texture of the original 
image. The leveling provides then the structural part of the 
image, that is, the image content, with a precise definition of 

[FIG5] Contrast-oriented connected operators: (a) reconstruction of f – c and (b) second 
reconstruction: dynamic opening.
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[FIG6] Contrast filtering: (a) hmax operator and (b) dynamic 
opening.
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[FIG7] Example of image decomposition in structural and texture parts with leveling: (a) original image, (b) marker: low-pass filtering 
with Gaussian filter, (c) leveling: structural part, and (d) residue: texture part.
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Because of  the "all-or-none" character of  nervous activity, neural 
events and the relations among them can be treated by means of propo- 
sitional logic. I t  is found that the behavior of every net can be described 
in these terms, with the addition of more complicated logical means for 
nets containing circles; and that for any logical expression satisfying 
certain conditions, one can find a net behaving in the fashion it describes. 
I t  is shown that many particular choices among possible neurophysiologi- 
cal assumptions are equivalent, in the sense that for every net behav- 
ing under one assumption, there exists another net which behaves un- 
der the other and gives the same results, although perhaps not in the 
same time. Various applications of the calculus are discussed. 

I. Introduction 

T h e o r e t i c a l  n e u r o p h y s i o l o g y  r e s t s  on c e r t a i n  c a r d i n a l  a s s u m p -  
t ions .  T h e  n e r v o u s  s y s t e m  is a n e t  of  neu rons ,  e ach  h a v i n g  a s o m a  
and  a n  axon .  T h e i r  a d j u n c t i o n s ,  o r  s y n a p s e s ,  a r e  a l w a y s  b e t w e e n  the  
a x o n  of  one  n e u r o n  a n d  the  s o m a  of  ano the r .  A t  a n y  i n s t a n t  a n e u r o n  
h a s  some  th resho ld ,  w h i c h  exc i t a t i on  m u s t  exceed  to  i n i t i a t e  a n  im-  
pulse.  This ,  excep t  f o r  the  f a c t  and  t h e  t i m e  of  i t s  occur rence ,  is  de- 
t e r m i n e d  b y  t h e  neu ron ,  no t  b y  the  exc i t a t ion .  F r o m  t h e  p o i n t  o f  ex-  
c i t a t i on  the  impu l se  is p r o p a g a t e d  to  all p a r t s  o f  t h e  neu ron .  T h e  
ve loc i ty  a long  the  a x o n  v a r i e s  d i r ec t ly  w i t h  i ts  d i a m e t e r ,  f r o m  less 
t h a n  one  m e t e r  p e r  second in t h in  axons ,  w h i c h  a r e  usua l ly  shor t ,  to  
m o r e  t h a n  150 m e t e r s  p e r  second in t h i c k  axons ,  wh ich  a r e  u sua l ly  
long .  T h e  t i m e  f o r  a x o n a l  conduc t ion  is consequen t ly  of  l i t t le  i m p o r -  
t ance  in d e t e r m i n i n g  the  t i m e  of  a r r i v a l  o f  i m p u l s e s  a t  po in t s  un-  
equa l ly  r e m o t e  f r o m  the  s a m e  source .  E x c i t a t i o n  a c r o s s  s y n a p s e s  oc- 
c u r s  p r e d o m i n a n t l y  f r o m  a x o n a l  t e r m i n a t i o n s  to  s o m a t a .  I t  is st i l l  a 
m o o t  po in t  w h e t h e r  th i s  depends  upon  i r r e c i p r o c i t y  of  ind iv idua l  syn-  
a p s e s  o r  m e r e l y  upon  p r e v a l e n t  a n a t o m i c a l  conf igura t ions .  T o  sup-  
pose  t he  l a t t e r  r equ i r e s  no h y p o t h e s i s  ad hoc a n d  exp la in s  k n o w n  ex- 
cept ions ,  bu t  a n y  a s s u m p t i o n  as  to  cause  is c o m p a t i b l e  w i t h  t h e  cal-  
culus  to  come.  No  case  is k n o w n  in wh ich  exc i t a t i on  t h r o u g h  a s ing le  
s y n a p s e  h a s  el ic i ted a n e r v o u s  i m p u l s e  in a n y  neu ron ,  w h e r e a s  a n y  
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t h a n  one  m e t e r  p e r  second in t h in  axons ,  w h i c h  a r e  usua l ly  shor t ,  to  
m o r e  t h a n  150 m e t e r s  p e r  second in t h i c k  axons ,  wh ich  a r e  u sua l ly  
long .  T h e  t i m e  f o r  a x o n a l  conduc t ion  is consequen t ly  of  l i t t le  i m p o r -  
t ance  in d e t e r m i n i n g  the  t i m e  of  a r r i v a l  o f  i m p u l s e s  a t  po in t s  un-  
equa l ly  r e m o t e  f r o m  the  s a m e  source .  E x c i t a t i o n  a c r o s s  s y n a p s e s  oc- 
c u r s  p r e d o m i n a n t l y  f r o m  a x o n a l  t e r m i n a t i o n s  to  s o m a t a .  I t  is st i l l  a 
m o o t  po in t  w h e t h e r  th i s  de p end s  upon  i r r e c i p r o c i t y  of  ind iv idua l  syn-  
a p s e s  o r  m e r e l y  upon  p r e v a l e n t  a n a t o m i c a l  conf igura t ions .  T o  sup-  
pose  t he  l a t t e r  r equ i r e s  no h y p o t h e s i s  ad hoc a n d  exp la in s  k n o w n  ex- 
cept ions ,  bu t  a n y  a s s u m p t i o n  as  to  cause  is c o m p a t i b l e  w i t h  t h e  cal-  
culus  to  come.  No  case  is k n o w n  in wh ich  exc i t a t i on  t h r o u g h  a s ing le  
s y n a p s e  h a s  el ic i ted a n e r v o u s  i m p u l s e  in a n y  neu r on ,  w h e r e a s  a n y  
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t h a n  one  m e t e r  p e r  second in t h in  axons ,  w h i c h  a r e  usua l ly  shor t ,  to  
m o r e  t h a n  150 m e t e r s  p e r  second in t h i c k  axons ,  wh ich  a r e  u sua l ly  
long .  T h e  t i m e  f o r  a x o n a l  conduc t ion  is consequen t ly  of  l i t t le  i m p o r -  
t ance  in d e t e r m i n i n g  the  t i m e  of  a r r i v a l  o f  i m p u l s e s  a t  po in t s  un-  
equa l ly  r e m o t e  f r o m  the  s a m e  source .  E x c i t a t i o n  a c r o s s  s y n a p s e s  oc- 
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culus  to  come.  No  case  is k n o w n  in wh ich  exc i t a t i on  t h r o u g h  a s ing le  
s y n a p s e  h a s  el ic i ted a n e r v o u s  i m p u l s e  in a n y  neu ron ,  w h e r e a s  a n y  
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Large Language Models are the (immediate) future

BERT 
Google 2018

94 million

Open AI 2019
1.5 billion 

Open AI 2020
175 billion

Google 2022
540 billion

Open AI GPT4 
170 trillion parameters

LLMs

Mammalian brains

80 billion neurons
150 trillion synapses

Human brain

size of GPT 4

0.760 billion neurons
10 trillion synapses

Cat brain

size of GPT 3.5

• Current LLMs have roughly the same number of parameters (1014) as the human brain
• And more compute:

• Brain (1016 FLOPS) over a lifetime (100 years) = 1022 operations
• LLM training time = 1025 operations

Machine Learning & Artificial Intelligence
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Homo sapiens 
(150 trillion synapes)Homo erectus 

(70 trillion synapes)
Mouse
(900 billion synapes)

diverged 
100 million years ago

• Biological intelligence grows by a factor of 2 in one million years
• Machine intelligence grows by a factor of 10 in 1 year

• Both AI and biological intelligence grow exponentially
• Factor of 106 difference in exponent
• Intersection, when machines and biology have comparable "intellegence” is now

MDS, Nature reviews physics (2022)

Machine vs. Biological intelligence

GPT4

even subexponential grown
will soon be superhuman

Machine Learning & Artificial Intelligence
Matthew Schwartz, Harvard University, 
EuCAIFConf Amsterdam, April/May 2024
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In the past, we made progress
depsite many dead ends

Are we even making forward progress 
anymore?

Maybe the problems are just too difficult (for us)

Could a cat ever learn to play chess?

goal

Theoretical High Energy Physics may have stalled

• Humans have limits too
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…well-established in nuclear physics
ML applications

1. Classification 

2. Clustering 

3. Multi-parameter fits

Single clustering

rsparse= 15 cm
rdense = 4 cm

Electromagnetic 
Calorimeter
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Fig. 19. An example of data set used to test our algorithm in Sect. 4.2. We concatenated 4 successive events to simulate the

e↵ects of event-mixing. Left: The simulated trajectories. Middle: The corresponding hits in the STT. Right: The reconstruction

using our algorithm.

Fig. 20. The distribution of the F1 scores for the 56,190 simu-

lated tracks. The blue histogram shows the distribution when

our algorithm is applied to the 15,000 events individually. The

orange histogram shows the results for the new setup of 3,750

data sets with 4 events each.

method on a machine with a 100 (1000) cores and meet
the requirements set by the foreseen interaction rates of
PANDA Phase One (Two).

5 Conclusion

Designing fast and e�cient track reconstruction algorithms
is crucial to meet the requirements of modern particle de-
tectors operating at very high interaction rates. In this
work, we presented the LOcal Track Finder (LOTF) algo-
rithm that performs fast track reconstructions using the
data collected by the Straw Tube Tracker (STT) embed-
ded in the upcoming PANDA experiment. The function-
ing of our algorithm uses a local approach that connects
single isolated hits to form tracks. Further, it builds upon

Fig. 21. The evolution of the wall-clock time (top panel) and

reconstruction rate (in hits/s, bottom panel) as a function of

the number of STT hits in the 33,750 events processed in this

work. We decomposed the total time based on the five major

processing steps performed by our algorithm (see details in

Sect.4.3). The average reconstruction rate is 40,178 hits/s.

Graph-based 
approach

Straw Tube Tracker

U-net

Mean-shift

Examples: multi-variate tools, 
neighbour-searches, likelihood fits, 
Hough transforms, Kalman filters, …

HADES
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the pull distributions from a normal distribution are only 
seen in the 3C fit and originate from the estimation of 
the vertex resolutions, which are not exactly described 
by a Gaussian.

4C Fit of the Reaction pp → pK+3

The 4C fit is used to constrain the four-momenta of all final 
state particles to that of the initial beam–target system. In 
this example, the final state particles are a proton and a kaon 
from the primary vertex and a proton and a pion from the Λ 
hyperon decay vertex. Figure 7 shows the momentum resolu-
tion for the kaon and the pion before and after the fit. The 
maximum improvement in resolution is achieved for the 
kaon momentum, with 𝜎pre−f it−𝜎post−f it

𝜎pre−f it

= 89% . This improve-
ment is more substantial for the kaon momentum resolution 
compared to the other particles. This is due to the larger 
uncertainty of the kaon associated with its larger total 
momentum. The probability distribution is uniform and the 
pull distributions follow a normal distribution, as shown in 
Fig. 8.

Missing Particle Fit of K+ in the Reaction pp → pK+3.

In this scenario, it is assumed that the kaon is not detected. 
The missing particle fit is employed to constrain the four-
momenta of the detected particles along with the undetected 
particle to match the beam–target system, as well as to esti-
mate the momentum of the missing particle. Figure 9 pre-
sents the probability distribution of the fit and compares the 
kaon momentum resolution from the initial guess and after 
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Fig. 5  Pull distributions for the 𝜋− track parameters after the 3C fit with respective mean and standard deviation
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… the promises for the future
ML & AI applications

U-net

Mean-shift

1. Model complex detector responses 
2. Assist in detector design 
3. Support experiment operations 
4. Support real-time event selection 
5. Anomaly detection 
6. Enable new discoveries via data mining, etc. 
7. Support data management & information preservation 
8. Exploit foundation models 
9. … etc….
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AI/ML for stable 
experiment operations



L. Schmitt, GSI/FAIR         9  
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AI/ML for stable 
experiment operations



• Beams at high intensities, harsh 
environment, increasing #sensors + 
holistic, complex 

• In-situ event reconstruction will rely 
on quality beam & calibrated sensors 

• High operational costs, limited beam 
time, and human resources 

• High publication pressure, spending 
years on calibrations etc. unacceptable 

• Remote control has become more 
important (pandemic)

L. Schmitt, GSI/FAIR         9  

PANDA VisualisationPANDA Visualisation

PANDA News

© GSI/Zeitrausch

AI/ML for stable 
experiment operations
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U-net

Mean-shift

Running an experiment at GSI 
(HADES @ FAIR Phase Zero)
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U-net

Mean-shift

Running an experiment at GSI 
(HADES @ FAIR Phase Zero)

Event rates (A+A):  ~20 kHz 
Data rates (peak):  ~400 MB/s

J. Michel et al., JINST 6 C122056
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HADES beam time, February 2022
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Smart experiment control at GSI/FAIR 

Objective 

Accelerator-driven experiments in the fields of particle, hadron, and nuclear physics have been 
traditionally in the forefront of technology with the well-established worldwide web as one of the 
key inventions with a huge impact in our present society. With the advent of next-generation par-
ticle accelerators, such as the FAIR facility currently under construction in Darmstadt, experiments 
will face new challenges requiring a paradigm shift in both data processing and experiment moni-
toring and control. With unprecedented interaction rates and ambitious physics objectives (so-
called ‘needle in haystack searches’), the next generation of experiments must become precision 
instruments operating under extreme conditions. Real-time and accurate stabilisation and control 
of the various detector elements will become even more essential than ever before. The chal-
lenges range from 1) coping high complexity in the number and diversity of sensors, 2) meeting 
the requirement of in-situ and fast sensor calibration, 3) being able to minimise the costs in human 
resources, computing and energy usage, and 4) maintaining a respectable and competitive time 
between experiment and publication. Our long-term goal is to deploy a fully-automated, AI-based 
experiment control to optimise detector parameters during data acquisition with the objective to 
reduce, or eliminate, the need for calibrating the data offline. We envisage that a collaborative ef-
fort between researchers active at GSI/FAIR and the HessianAI community will be fruitful to ad-
dress the challenges and to provide a unique application that broadens the AI-research land-
scape. 



Concept 

The aim is to provide an infrastructure that will enable 
the development of an auto-encoding AI model of a 
complex sensor network for a wide range of FAIR ex-
periments. Depending on the sensitivity, various inputs,  
including environmental parameters, beam conditions, 
information from harvest and reconstructed data, and 
Monte Carlo information, are foreseen. The output will 
provide updated calibration values and optimised sen-
sor parameter predictions that can be used to adjust 
operational settings in real-time. As a first step, slow-
control and beam data of a subsystem collected during 
a past experiment will be exploited to develop an AI 
prototype model. As a proof-of-principle, this system 
will subsequently be used parasitically during an up-
coming GSI/FAIR experiment in Phase Zero.


Collaboration 

GSI/FAIR is an international facility, thereby connecting various physicists and engineers from all 
over the world in various large collaborations. GSI/FAIR researchers are experts in the operation 
and characterisation of a wide spectrum of detectors, in processing raw data into high-level in-
formation, and in conducting Monte Carlo simulations taking into account the various details of 
the actual experiment. Today’s software frameworks have been developed with a mindset based 
on a traditional human-driven waterfall model, thereby disconnecting the detector control aspects 
from the data processing. To realise the project outlined here, it is necessary to rethink these con-
cepts, connect with communities outside our comfort zone and, with a proof-of-principle concept 
at hand, convince our communities. We, therefore, wish to collaborate with experts in the field of 
artificial intelligence, computer vision, and modern software engineering to spearhead new 
projects beneficial for all participants.  


Contact 

Helena Albers 		 - h.albers@gsi.de

Johan Messchendorp	- j.messchendorp@gsi.de



Real-time calibrations for FAIR
…with HADES Mini Drift Chambers (MDCs) as demonstrator case

Σ(1385)+ → Λπ+

Valentin Kladov (GSI)

26 2 The HADES experiment
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Figure 2.4: dE/dx vs. track momentum times charge for the MDC detector system. The black lines
indicate the theoretical Bethe-Bloch curves of protons, pions and kaons. The particle identification is
done by using graphical cuts on these distributions.

track is then tagged with the additional information on the particle mass, which is characteristic
for each species, and with this information the 4-vector of the track can be calculated.
It has to be emphasized that this identification method is not unambiguous. In fact, it might
happen that, for example, a proton track falls within the pion graphical cut and is therefore tagged
as a pion. This phenomenon is called misidentification. It plays an important role, especially for
the identification of kaons. Indeed, kaons are also identified with help of graphical dE/dx cuts,
even though their signals are not visible in Figure 2.4. The so obtained kaons are in most of the
cases misidentified pions and protons; they are therefore called kaon candidates. Examples for
the different graphical cuts are given in chapter 3.

2.2.2 Time-of-flight reconstruction

The knowledge of the time-of-flight (tof) of the particle offers a second, independent particle
identification method. By taking the traveled path length lMET A from the event vertex to the hit
in the META detectors, the velocity of the particle can be calculated (v = β · c = lMET A/tof).
Taking the additional information of the track momentum p, the mass m of the reconstructed
particle gets accessible:

p = mc
β

√

1 − β2
(2.4)

As the rest mass is a characteristic quantity for each particle species, this method can be used
for the particle identification. Unfortunately, the HADES setup was not equipped with a start
detector during the p+p experiment so that no common start time information tStart is available.
This, however, is necessary in order to determine the time-of-flight (tof = tMET A − tStart).
To overcome this problem, a time-of-flight reconstruction algorithm has been developed. This
algorithm works on an event-hypothesis basis, where in each event pions and protons are identified

Energy loss (dE/dx) depends on 
beam & environmental conditions


Regular calibration necessary!



Σ(1385)+ → Λπ+

Prediction Accuracy

Valentin Kladov           DPG-Frühjahrstagung Gießen 2024                         13.03.2024     8/10

Simulating new beamtime:
1. Get average 𝑑𝐸/𝑑𝑥 from offline calibration in feb22 data;

2. Train on the part of it without regularization (overfit);

3. Predict with added regularization and regular retrainings.

The case when NN is trained on full feb22 dataset.
Real-time calibrations for FAIR
…with HADES Mini Drift Chambers (MDCs) as demonstrator case

Valentin Kladov (GSI)

• Long short-term memory 
(LSTM) within in a graph 
convolutional network


• ~5 M parameters


• … ideal for time-sequential 
data with smoothness in 
environmental changes


• … making predictions for 
present conditions

Ionization losses in drift chambers

• Significant fluctuations (5-

10%);

• Clear dependence on 

environmental parameters; 

• A lot of environmental 

parameters being measured.

Correlations between atmospheric pressure (red) and averaged ionization losses (blue). Feb22.
Each dot is a single run, ~100k events, 1-2 min 

Smooth change with time (~15 min).

• Atmospheric pressure;
• High voltage;
• CO2 concentration;
• Overpressure;
• H2O concentration; 
• Dew Point;
• Electronics temperature;

Reasons to test on MDC: Input parameters:

Valentin Kladov           DPG-Frühjahrstagung Gießen 2024                         13.03.2024     4/10

Environmental features
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Japan Proton Accelerator Research Complex

JPARC
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Image analysis in nuclear physics
…on a massive scale! 

Take Saito

Nuclear Emulsion: 
Charged particle tracker 
with best spatial resolution!

(since 1905, Rutherford!)

J-PARC E07 
experiment 
(Japan)
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Image analysis in nuclear physics
…on a massive scale! 

Take Saito

Nuclear Emulsion: 
Charged particle tracker 
with best spatial resolution!

(since 1905, Rutherford!)

J-PARC E07 
experiment 
(Japan)

…
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Image analysis in nuclear physics
…on a massive scale! 

Take Saito

…

Sliced image

Data size:  
•107 images per emulsion (100 T Byte) 
•1010 images per 1000 emulsions (100 P Byte) 
Number of background tracks:  
•Beam tracks: 104/mm2 

•Nuclear fragmentations: 103/mm2

100µm

Current equipments/techniques 
with visual inspections 

560 years
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Image analysis in nuclear physics
…on a massive scale! 

Take Saito

Data size:  
•107 images per emulsion (100 T Byte) 
•1010 images per 1000 emulsions (100 P Byte) 
Number of background tracks:  
•Beam tracks: 104/mm2 

•Nuclear fragmentations: 103/mm2

Current equipments/techniques 
with visual inspections 

560 years

3 years

Detected!Trained
model

Machine Learning

Mask R-CNN

Training images obtained using 
Generative Adversarial Network
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Pushing Boundaries: 
Femtoscale Research with Large-Scale Tech

(in accelerator-driven “nuclear” physics)

1.Evolution of femto-scale research fundamentally depends on 
breakthroughs in computational technologies.

2.Most of today’s computing innovations are built on models and 
concepts proposed already decades ago.

3.Online computing is becoming smarter (online offline).≈
4.The application of ML/AI, and the role of open science has 

attracted attention over the past decade.
5.This interest is mostly driven by funding opportunities and the 

technological excitement. 
6.Its academic values (e.g. impact on scientific advances) are yet 

underestimated, but will increasingly be recognised!



Pushing Boundaries: 
Femtoscale Research with Large-Scale Tech

(in accelerator-driven “nuclear” physics)

1.Well integrated in accelerator/ring activities at GSI/FAIR. 

2.What about its usefulness in (large-scale) experiments?

3.Follow-up the recommendation of ChatGPT?

4.Role of ML & AI?

5.Suggestions?

GNUradio?


