Design and Implementation of an Adaptive Data Rate LoRa Modem for LEO Satellites Using SDR and GNU Radio

European GNU Radio Days 2024 30 August 2024 Prepared by: Dr. Meltem KÖROĞLU Ceren Gülsüm KARAKÖSE Presented by: Gizem ARI ÖZCAN

Outline

- LEO Satellites and IoT Applications
- LoRa Receiver and Transmitter Waveform Structure
- LoRa Waveform Properties
- LoRa Sensitivity Values and Data Rates
- LoRa Adaptive Data Rate Algorithm
- Link Budget Computation
- LEO Channel Model
- LoRa PER Performance and Doppler Robustness
- LoRa Waveform Parameter Estimation and Results
- Adaptive LoRa Modem GNU Flow
- Results
- Conclusion
- Plan-S Satellites and IoT Products

LEO Satellites and IoT Applications

LoRa Receiver and Transmitter Waveform Structure

LOng RAnge (LORA) Waveform Parameters (2)

LoRa Sensitivity Values and Data Rates

- Sensitivity
- Configurable parameters
 - SF and BW
- SF ranges from 7 to 12
 - Sensitivity increases
 - Data rate decreases
- Higher SF values spread the signal over time (duration):
 - improving sensitivity but
 - lowering data rate

	Spreading Factor (SF)	Bandwidth (BW)	Sensitivity (dBm)	Data Rate (bps)
\subset	7	125 kHz	-120	5,469
	7	250 kHz	-117	11,338
	7	500 kHz	-114	22,676
	8	125 kHz	-123	3,125
	8	250 kHz	-120	6,250
	8	500 kHz	-117	12,500
	9	125 kHz	-126	1,563
	9	250 kHz	-123	3,125
	9	500 kHz	-120	6,250
	10	125 kHz	-129	781
	10	250 kHz	-126	1,563
	10	500 kHz	-123	3,125
	11	125 kHz	-132	391
	11	250 kHz	-129	781
	11	500 kHz	-126	1,563
	12	125 kHz	-135	195
	12	250 kHz	-132	391
	12	500 kHz	-129	781

7

LoRa Sensitivity Values and Data Rates

- Sensitivity
- Configurable parameters
 - SF and BW

• Higher BW allows high data

rate but requires more power.

Spreading Factor (SF)	Bandwidth (BW)	Sensitivity (dBm)	Data Rate (bps)
7	125 kHz	-120	5,469
7	250 kHz	-117	11,338
7	500 kHz	-114	22,676
8	125 kHz	-123	3,125
8	250 kHz	-120	6,250
8	500 kHz	-117	12,500
9	125 kHz	-126	1,563
9	250 kHz	-123	3,125
9	500 kHz	-120	6,250
10	125 kHz	-129	781
10	250 kHz	-126	1,563
10	500 kHz	-123	3,125
11	125 kHz	-132	391
11	250 kHz	-129	781
11	500 kHz	-126	1,563
12	125 kHz	-135	195
12	250 kHz	-132	391
12	500 kHz	-129	781

Received Power computation at the Module side

Based on link margin, select SF and BW values maximize the data rate while ensuring a positive link margin

Selected SF and BW values are used to modulate (LoRa) data for transmisson

Link Budget Parameters

Parameters

- Satellite Pout: 13 dBm
- Satellite Antenna Gain: Maximum 8dBi @ nadir angle
- Satellite Tx Loss: 0.2 dB

next

- Link Free Space Path Loss (FSPL)
- Atmospheric Loss (ITU P.676-11)
- Ionospheric Loss (ITU-R P.531)
- Module Antenna Gain: Maximum 3dBi @ nadir angle
- Module Rx Loss: 0.4 dB
- Polarization Loss

- Beacon Period
- Module Latitude Longitude Altitude
- Satellite Antenna Gain CST output file
- Module Antenna Gain CST output file

Outputs

٠

- Free Space Path Loss
 - Module Received Power in dBm 2
- Doppler Frequency Shifts in Hz 3

Orbit Propagation

Two Line Element (TLE) Data Format

LoRa PER Performance and Doppler Robustness

LoRa Waveform Parameter Estimation Algorithm

LoRa Waveform Parameter Estimation Results

Correlation Peak for Different SF Values

Adaptive Lora Modem GNU Radio Flow (Transmitter)

-

Adaptive Lora Modem GNU Radio Flow (Receiver)

PLANS

Test Results

PLANS

Test Results

Conclusion

- LoRa PER performance computed according to different satellite scenarios that includes doppler shift, free space loss and noisy environment using GNU Radio and SDR
- LoRa doppler robustness is observed according to simulated satellite passes suitable with the link budget.
- Adaptive data rate mechanism is developed by using LoRa bank filter block and higher data rates can be achieved during a satellite pass.
- As the elevation angle increases, the LoRa system optimizes its parameters, such as decreasing the spreading factor and increasing the data rate, to take advantage of better signal conditions.
- The dynamic adjustment of bandwidth at certain elevations further enhances communication efficiency.
- The system is designed to maximize data throughput and maintain link quality as the satellite or transmitter's elevation relative to the receiver changes.

References

- B. Al Homssi, K. Dakic, S. Maselli, H. Wolf, S. Kandeepan and A. Al-Hourani, "IoT Network Design Using Open-Source LoRa Coverage Emulator," in IEEE Access, vol. 9, pp. 53636-53646, 2021
- Lora Modulation Basics AN1200.22 Semtech Wireless, Sensing and Timing Products, <u>https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf</u>
- J. Tapparel, O. Afisiadis, P. Mayoraz, A. Balatsoukas-Stimming and A. Burg, "An Open-Source LoRa Physical Layer Prototype on GNU Radio," 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 2020, pp. 1-5
- https://github.com/tapparelj/gr-lora_sdr

PLANS

PLAN-S Satellites and IoT Modules

29

CONNECTA T1.1

LaunchSpaceX, Falcon 9Transporter 5Date25 May 2022OrbitSSOAltitude550 kmLTDN13:00

The design, development and verification processes were completed in less than 1 year.

IoT-based communication experiments were conducted.

Subsystems developed within Plan-S gained satellite heritage.

CONNECTA T1.2

Launch SpaceX, Falcon 9

Transporter 6

Date 3 January 2023

Orbit SSO

Altitude 550 km

LTDN 09:30

Optimized IoT payload and other subsystems with updates

It is called 'software-based satellite'

It is sent for the development and testing of Plan-S IoT technology

CONNECTA T2.1

Launch	SpaceX, Falcon 9 Transporter 7	It is a test satellite equipped with a high resolution multispectral
Date	15 April 2023	camera.
Orbit	SSO	
Altitude	550 km	for testing innovative earth
LTAN	10:30	observation applications.

CONNECTA T3.1 & T3.2

Launch	SpaceX, Falcon 9	
	Transporter 9	
Date	11 November 2023	
		Inter Satellite
Orbit	SSO	verified betw
Altitudo	EEO km	salennies.
Alliude	550 KM	
LTAN	10:30	

Link (ISL) is veen two

CONNECTA IOT 1-2-3-4

Launch	SpaceX, Falcon 9
	Transporter 11
Date	16 August 2024
Orbit	SSO
Altitude	550 km
LTAN	10:30

Begining of the Connecta IoT Network

> First Commercial IoT satellite batch for Plan-S

> > PLAN

PLAN-S IoT Products

IOT MODULE

IoT device manufacturers can integrate this module into their IoT devices to enable direct satellite connectivity.

- Dual Connectivity: Compatible with both LoRaWAN and the Connecta IoT Network.
- Form Factor: Surface-mount module with an edge connector.
- Size: 35x25x5 mm.
- Versions: Available with or without GPS.
- Data Encryption: Complies with AES standards for secure data transmission.

IOT MODEM

- IoT system integrators can connect their existing devices to satellites using this modem.
- Integrated Unit: A single unit with antennas for satellite communication, external LoRa devices, and GPS.
- Interfaces: Supports Serial, Ethernet, or BLE (Bluetooth Low Energy) interfaces.
- Power Backup: Includes an internal battery for short-term power outages.
- Data Encryption: Complies with AES standards for secure data transmission.

IoT solution providers can connect their existing IoT devices to the Connecta IoT network using this Access Terminal.

SATELLITE ACCESS TERMINAL

PL-AN

- External Antennas: The Access Terminal comes with external antennas for satellite and device connectivity, ensuring easy integration for any type of application.
- Connectivity Options: Provides Wi-Fi, BLE (Bluetooth Low Energy), and LoRa connectivity for any IoT device.
- Data Encryption: Complies with AES standards for secure data transmission.

How Does Connecta IoT Network Work? - YouTube

PLAN-S IoT Products

IOT MODULE

IoT device manufacturers can integrate this module into their IoT devices to enable direct satellite connectivity.

- Dual Connectivity: Compatible with both LoRaWAN and the Connecta IoT Network.
- Form Factor: Surface-mount module with an edge connector.
- Size: 35x25x5 mm.
- Versions: Available with or without GPS.
- Data Encryption: Complies with AES standards for secure data transmission.

IOT MODEM

- IoT system integrators can connect their existing devices to satellites using this modem.
- Integrated Unit: A single unit with antennas for satellite communication, external LoRa devices, and GPS.
- Interfaces: Supports Serial, Ethernet, or BLE (Bluetooth Low Energy) interfaces.
- Power Backup: Includes an internal battery for short-term power outages.
- Data Encryption: Complies with AES standards for secure data transmission.

IoT solution providers can connect their existing IoT devices to the Connecta IoT network using this Access Terminal.

SATELLITE ACCESS TERMINAL

PLAN

- External Antennas: The Access Terminal comes with external antennas for satellite and device connectivity, ensuring easy integration for any type of application.
- Connectivity Options: Provides Wi-Fi, BLE (Bluetooth Low Energy), and LoRa connectivity for any IoT device.
- Data Encryption: Complies with AES standards for secure data transmission.

Thanks for your attention!

Any Questions? <u>meltem.koroglu@plan.space</u> gizem.ozcan@plan.space

www.plan.space • info@plan.space

LoRa Alliance

SPACEX EXOLAUNCH RAKON SPACEX EXOLAUNCH RAKON SPACEX RAKON RAKON RAKON SPACEX RAKON RAKON