gr4-packet-modem a QPSK packet modem for GNU Radio 4.0

Dr. Daniel Estévez

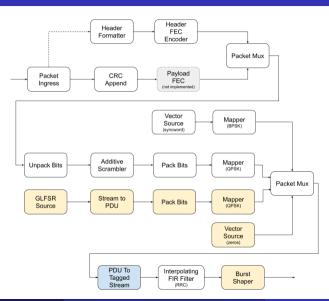
29 August 2024 European GNU Radio Days 2024, FAIR (Darmstadt)

gr4-packet-modem

- A packet-based QPSK modem implemented from scratch in GNU Radio 4.0
- Funded by GNU Radio with an ARDC grant. Project runs May to September.
- Goals:
 - Test GNU Radio 4.0 in a digital communications application
 - Produce an example of a complete system and documentation

Design criteria

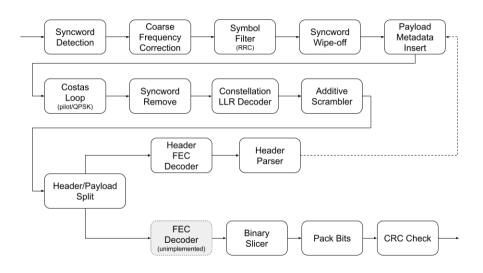
- Modular implementation with many "small" blocks
- Suitable for IP communications (TUN device)
- Should have good latency
- Flexible packet size ⇒ no payload FEC
- Use good signal processing techniques (e.g., FFT-based preamble correlation for synchronization)
- Production ready (besides the lack of payload FEC)
- Only QPSK. Provision to support additional MODCODs (user customization)
- If a payload FEC is added, should work at low SNR
- Burst mode and stream mode (continuous tranmission with idle packet insertion)


Waveform design

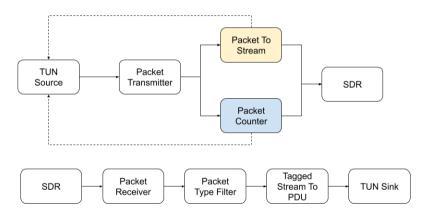
- Single-carrier root-raised cosine QPSK waveform
- Packet structure:

	Symbols	Constellation	Notes
Syncword	64	BPSK	CCSDS 64-bit ASM
Header	128	QPSK	32 bit with r=1/4 LDPC and r=1/2 repetition
Payload	Variable	QPSK/other	
CRC-32	32 bits	QPSK/other	CRC-32 of payload
Ramp down	9	QPSK	Only burst mode; pseudorandom

- Header, payload and CRC-32 are scrambled with 17-bit CCSDS scrambler
- Header contains payload length, packet type (idle, MODCOD, etc.), with room for user extensions
- Burst mode has amplitude ramp up and ramp down


Packet transmitter

Receiver design


- Use FFT-based correlation to detect packet and estimate amplitude, phase, frequency and timing (several frequency offsets tested)
- Correct all the packet for the estimated frequency error and amplitude
- RRC filter and downsample to 1 sample/symbol using estimated timing
- Closed-loop phase recovery with Costas loop, seeded with estimated phase and frequency (use syncword as known pilots)

Packet receiver

Complete modem

The transmitter uses packet counting for latency management.

Demo

Disclaimer: feedback is subjective and prone to change!

Nice features:

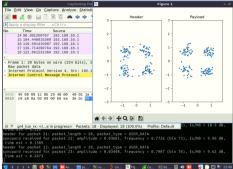
- processBulk() calls are chunked using tags: a tag can only appear in the first item. Caveat: too much overhead when not needed. Perhaps should be opt-in.
- Messages can be treated as regular connections: PortIn<Message>,
 PortOut<Message>. Caveats: not compatible with MsgPortIn, MsgPortOut.
 Probably single-producer.
- Rational-ratio resampling blocks are a first class citizen:
 Resampling<inputChunkSize, outputChunkSize>
- HistoryBuffer<T> quite good replacement for history (also useful in other contexts)

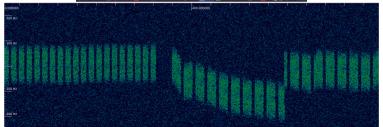
Shortcomings:

- Tags are too expensive. Packet transmitter using packet_len tags didn't work properly.
- Can use std::vector<T> to delimit packets (on the receiver not really), but:
 - Buffers are 65536 elements by default
 - Lack of effective backpressure (buffer only fills up with 65K packets)
 - Memory management (who deallocates unused packets? does this constantly allocate and deallocate?...)
- "General blocks" perhaps too simplified. No forecast(), just Async port annotation. Might not be enough in some cases (e.g., when to call a block? how to know if a block can produce output without any input?)
- scheduler::Simple<scheduler::ExecutionPolicy::multiThreaded> doesn't really work at the moment
- Some buffer management bugs (fixes in progress)

Dr. Daniel Estévez gr4-packet-modem EU GNU Radio Days 2024

A fun experiment: test over a GEO transponder




Possible interest at your side to test the your new packet modem over a C-band uplink over GEO? I have 1 MHz capacity over Intelsat at 18W. Uplink only.

24 dBi 5 GHz WiFi flat panel and 2W power amplifier

IO data can be picked up via ZMQ at the teleport in Germany.

