
The cheapest GPSDO yet ..

Andreas Gibhardt

There is a LOT of DIY

- Discrete PLLs / Decimators
- 8 Bit PWMs
- Arduinos
- Long warmups
- Endless debugging
- Afraid of open windows

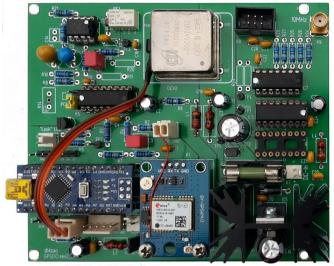
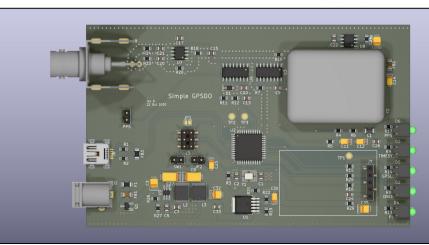
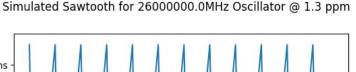
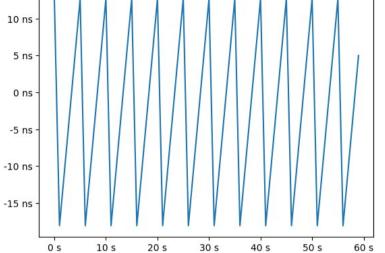



Foto:DC5WW




Goals

- No clock bias drift
- Quick warmup
- Correct sawtooth effect
- Minimal BOM

. .

• 0.5 ppb even with an open window

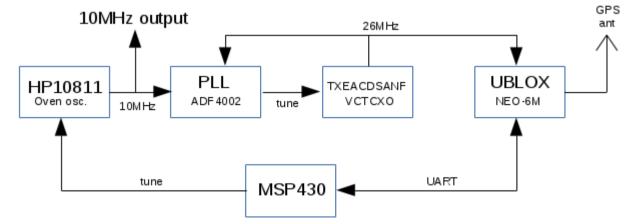
The neat Trick - Discipline the receiver

The LEA-M8F is the only Ublox model that is disciplining its own clock directly

- The receiver internally knows its clock bias down to Pico Seconds
- Not too many analog problems
- Very short warmup because of this
- The LEA-M8F has the wrong rate (30.72MHz) and is not recommended for new designs anymore

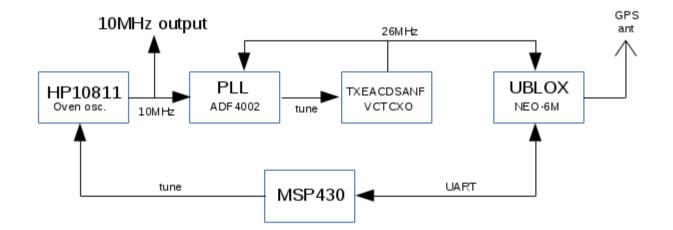
32.17.3 UBX-NAV-CLOCK (0x01 0x22)

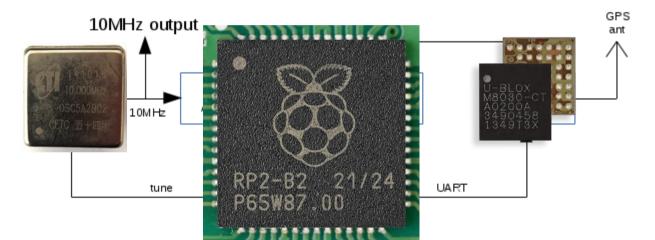
32.17.3.1 Clock solution


Message		UBX-NAV-CLOCK									
Description		Clock solution									
Firmware		Supported on:									
		• u-blox 8 / u-blox M8 protocol versions 15, 15.01, 16, 17, 18, 19, 19.1, 19.2, 20, 20.01,									
		20.1, 20.2, 20.3, 22, 22.01, 23 and 23.01									
Туре		Periodic/Polled									
Comment		-									
		Header		Class	ID	Length (Bytes) F			Payload	Checksum	
Message Structure		Ox	B5 0x62	0x01	0x22	20			see below	CK_A CK_B	
Payload Conte	ents:										
Byte Offset Nu		ber	Scaling	Name			Unit	Description			
	Form	nat									
0 U4		-		iTOW			ms GPS	GPS time of week of the navigation epoch.			
							See the description of iTOW for details.				
4	14		-	clkB		ns	Clock bias				
8	14		-	clkD		ns/s	Clock drift				
12	U4		-	tAcc		ns	Time accuracy estimate				
16	U4		-	fAco			ps/s	Frequency accurac	y estimat	e	

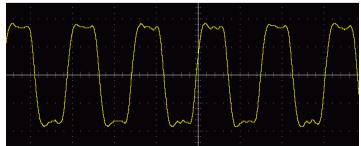
Lets DIY This!

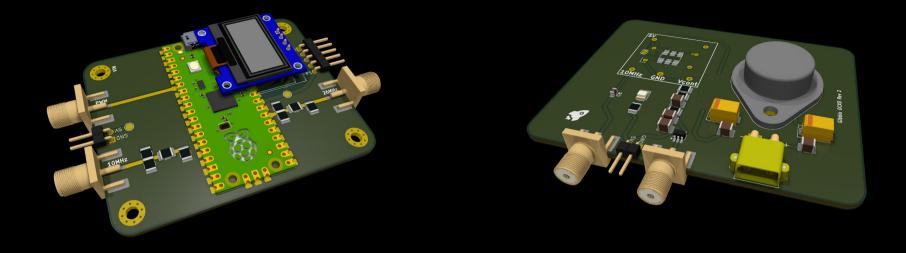
Or read **Marko Ceboklis'** blog first, unlike me who discovered it yesterday.


Its a **great** analysis to this approach.


* https://lea.hamradio.si/~s57uuu/mischam/gpsy/index.html

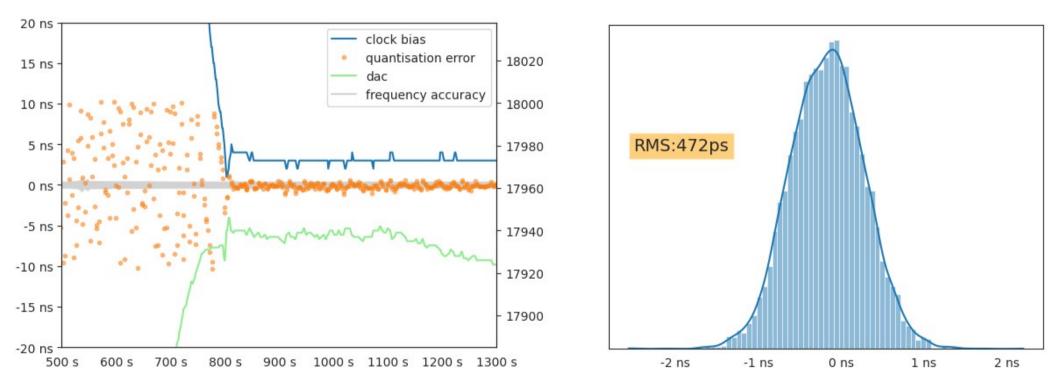
Let's make it even simpler ..




* https://lea.hamradio.si/~s57uuu/mischam/gpsy/index.html

The rp2040 is Awesome!

Requested:	104.0 MHz
Achieved:	104.0 MHz
REFDIV:	1
FBDIV:	104 (VCO = 1040.0 MHz)
PD1:	5
PD2:	2



- OCXO + 16Bit PWM DAC
- Resampling to 26MHz via rp2040 Clock PLL
- Configuration of GPS also via rp2040

Results

* There is a problem in the control loop 2 the performance will be even better in the future

Results

Timing performance data

Timing accuracy	RMS	30 ns
	99%	< 60 ns
	Granularity	21 ns
	Compensated	15 ns ¹

¹ Quantization error information can be used to compensate the granularity related error of the timepulse signal

Results

Timing performance data

Timing accuracyRMS30 ns99%< 60 ns</td>Granularity21 msCompensated15 ns1

¹ Quantization error information can be used to corporate the granularity related error of the timepulse signal **CORRECT**

Find the Files soon at **github.com/gibbi/** We do fun stuff like this all day and **we are Hiring!** I have leftover PCBs if you want one!

reach out to andreas.gibhardt@dedrone.com

1 FOE

↑69m H 598m / 133°