Dan Boschen

Last Updated: Sept 14, 2024

Basics

ан сайтаа (ал сайтаа) Ал сайтаа (ал сайтаа)

Dan Boschen

Last Updated: Sept 14, 2024

Useful Relationships

Dan Boschen

Last Updated: Sept 14, 2024

Transforms (All time and sample domain functions causal and stable)				
Time Domain	Laplace	Sample Domain	Z	
f(t)	$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$	f[nT]	$F(z) = \sum_{n=0}^{\infty} f[nT] z^{-n}$	
Differentiation $\frac{df}{dt}$	sF(s) - f(0)	Difference $f[n] - f[n-1]$	$\frac{z-1}{z}F(z)$	
Integration $\int_{0}^{t} f(\tau) d\tau$	$\frac{1}{s}F(s)$	Accumulation $\sum_{n=0}^{n} f[n]$	$\frac{z}{z-1}F(z)$	
Exponential Decay $e^{-at}f(t)$	F(s+a)	Geometric Decay $a^{-n}f[n]$	F(za)	
Time Delay $f(t-a)$	$e^{-sa}F(s)$	Sample Delay $f[n-m]$	$z^{-m}F(z)$	
Impulse $\delta(t)$	1	Unit Sample $\delta[n]$	1	
1	$\frac{1}{s}$	1	$\frac{z}{z-1}$	
t	$\frac{1}{s^2}$	nT	$\frac{Tz}{(z-1)^2}$	
e ^{at}	$\frac{1}{s-a}$	e^{anT}	$\frac{z}{z-e^{aT}}$	
		a^{nT}	$\frac{z}{z-a}$	
Initial Value Theorem	$\lim_{t\to 0^+} = \lim_{s\to\infty} sF(s)$	Initial Value Theorem	$f[0] = \lim_{z \to \infty} F(z)$	
Final Value Theorem	$\lim_{t \to \infty} = \lim_{s \to 0} sF(s)$ (all poles in LHP, no more than one pole at the origin)	Final Value Theorem	$f[n] = \lim_{z \to 1} (z - 1)F(z)$ (all poles in unit circle, no more than one pole at z=1)	
$f(t)^*g(t)$	F(s)G(s)	$f[n]^*g[n]$	F(z)G(z)	

/ A 11 11 ÷. ÷ . . ~

"All assumed causal and stable":

Time Domain

f(t)=0 for t<0, all poles in LHP, ROC contains jw axis and positive infinity

Sample Domain

f(n)=0 for n<0, all poles inside unit circle, ROC contains unit circle and infinity

Last Updated: Sept 14, 2024

np: import numpy as np sig: import scipy.signal as sig con: import control as con

Polynomial factoring and manipulation

5	6 1
np.roots()	Polynomial roots, ex: np.roots([1, 6, 10]) to solve for roots of $x^2+6x+100$ (-3 ± j)
np.poly()	Polynomial from roots, ex: np.poly([-3+1j, -3-1j]) = [1., 6., 10.]
np.convolve()	Convolve (multiply) two polynomials, ex np.convolve($[1, 5], [1, 2, 4]$) for (x+5)(x ² +2x+4)
np.polydiv()	Deconvolve (divide) two polynomials
sig.residue()	Partial-fraction expansion

Converting between s and z

sig.bilinear() Bilinear transform from s to z, in either zero-pole-gain or transfer function (TF) form con.c2d() Continuous to discrete mapping s to z. methods = 'zoh' (zero order hold), 'foh' (first order hold), 'impulse' (impulse invariance), 'tustin' (Bilinear transform)

Control systems (see https://python-control.readthedocs.io/en/0.9.1/)

[num,den] = con.zpk2tf(z,p,k)zero-pole to transfer function conversion [z,p,k]= con.tf2zpk([num],[den]) Transfer function to zero-pole conversion

con.sys=tf([*num*],[*den*],*TS*) Transfer function system data structure, TS = sampling interval (omitted for a continuous system.)

Example:	sys=tf(3,[1 2])	for system 3/(s+2)
Example:	sys=tf(3,[1 2],1)	for system 3/(z+2), sampling time
		normalized or 1 second

All of the following commands operate on sys entered as above.

con.nyquist(sys)	Nyquist Plot
con.rlocus(sys)	Root Locus Plot
con.pzmap(sys)	Map of poles and zeros
con.bode(sys)	Bode Plot
con.step_response(sys)	Step Response
con.impulse_response(sys)	Impulse Response
con.feedback(sys1,sys2)	Closed loop response from open loop response
con.minreal(sys)	Reduce transfer function (good practice to always use this!)

Dan Boschen

Dan Boschen

Last Updated: Sept 14, 2024

Polynomial fa roots() poly() conv() deconv() residue()	ctoring and manipulation Polynomial roots, ex: roots([1 6 10]) to solve for roots of x^2+6x+100 (-3 ± j) Polynomial from roots, ex: poly([-3+j -3-j]) = [1 6 10] Convolve (multiply) two polynomials, ex conv([1 5],[1 2 4]) for (x+5)(x^2+2x+4) Deconvolve (divide) two polynomials Partial-fraction expansion		
Converting be	etween s and z		
bilinear()	Bilinear trans	form from s to z, in either zer	p-pole-gain or transfer function (TF) form
impinvar()	(MATLAB ONLY) Impulse invariance from s to z, in either zero-pole-gain or TF form		
c2d()	supports imp	ulse invariance within the c2c	command)
Control system	ms		
[num.den]= zi	n2tf(z, n, k)	zero-pole to transfer funct	on conversion
[z,p,k]= tf2zp([[num],[den])	Transfer function to zero-p	ole conversion
sys=tf([<i>num</i>],[<i>den</i>], <i>TS</i>)		Transfer function system data structure, TS = sampling interval (omitted for a continuous system.)	
		Example: sys=tf(3,[1 2]) Example: sys=tf(3,[1 2],1)	for system 3/(s+2) for system 3/(z+2), sampling time normalized or 1 second

All of the following commands operate on sys entered as above.

nyquist(sys)	Nyquist Plot
rlocus(sys)	Root Locus Plot
pzmap(sys)	Map of poles and zeros
bode(sys)	Bode Plot
step(sys)	Step Response
impulse(sys)	Impulse Response
feedback(sys1,sys2)	Closed loop response from open loop response
minreal(sys)	Reduce transfer function (good practice to always use this!)