
License

Copyright © 2024 C. Daniel Boschen

This document “Control Systems - Quick Start with Python” by Dan Boschen is licensed
under CC BY-NC-ND 4.0.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/ .

While every precaution has been taken in the preparation of this notebook, the author,
publisher, and distribution partners assume no responsibility for any errors or omissions, or
any damages resulting from the use of any information contained within it.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Link to Python Control Library Docs: https://python-control.readthedocs.io/en/0.9.4/

import numpy as np
import scipy.signal as sig
import matplotlib.pyplot as plt
import control as con
import scipy.fft as fft
import numpy.random as rand
import math
sound processing
from IPython.display import Audio
import wave

%matplotlib ipympl

configurations

disable max open figure warning
plt.rcParams.update({'figure.max_open_warning': 0})

In [1]:

In [2]:

In [3]:

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://python-control.readthedocs.io/en/0.9.4/

Analog Phase Lock Loop Implementation
For this simulation we will model a PLL using the Microchip PFD1K 8 GHz Phase/Frequency
Detector

to lock an HMC733LC4B 10 to 20 GHz VCO to a 100 MHz reference for outputs from 10 to
20 GHz in 100 MHz steps

This will require a prescaler of 10e9/100e6 = 100 up to 20e9/100e6 = 200

We'll design for a loop BW of 1 MHz.

Analog PLL Loop Model

VCO
HMC733LC4B 10-20 GHz VCO

Establish VCO gain (tuning slope) from ADI datasheet:

https://www.analog.com/media/en/technical-documentation/data-sheets/hmc733.pdf

https://www.analog.com/media/en/technical-documentation/data-sheets/hmc733.pdf

At 10 GHz the control voltage = 0V, at 20 GHz the control voltage = 18V

Howeer the curve suggests the tuning slope is not quite linear. Conveniently the slope
(derivative) is provided to us in the datahsheet:

We see from this that we have a frequency dependent gain constant. (Best approach in my
opinion is to provide a linearization translation so that we have a constant slope
independent of frequency- in this quick example we will determine the gain coefficients for
operation at 15 GHz and then from that determined the variability as the frequency is
increased and decreased. The different for each setting also effects the loop parameters).N

From the datasheet plots we see that for operation at a 15 GHz output, the tuning voltage is
nearly 7.5V, and at 7.5V the slope is approximately 600 MHz/Volt.

In radian frequency this is (rad/sec)/V

For use in a phase lock loop, the phase vs time of the VCO output is the integral of it's
frequency vs time. (Since frequency is a change in phase versus a change in time or).
The output frequency is directly proportional to the input control voltage, thus in the time
domain, the VCO is an integrator as well as unit translator from volts to phase and we have
the complete operation of the VCO in the Laplace domain as:

The "s" that appears in the formula above is complex frequency, not to be confused with
seconds. and has units of 1/seconds (hence frequency).

PFD
PFD1K

Establish Phase Detector Gain from Microchip Datasheet:

https://ww1.microchip.com/downloads/aemDocuments/documents/RFDS/ProductDocuments/D

Output voltage vs phase with differential output properly terminated to convert currents to
voltage:

KV = 2π600e6 = 3.77e9

dϕ/dt

= 3.77e9 rad/VKV

s

s = σ + jω

KPD

https://ww1.microchip.com/downloads/aemDocuments/documents/RFDS/ProductDocuments/DataSheets/PFD1K.pdf

Loop Filter
The evaluation board for the PFD1K includes a simple Proportional-Integral (PI) Loop Filter
(see page 17 of the datasheet), which integrates the differential voltage out of the PFD and
adds a proportional gain to produce the single control voltage the the VCO:

We will abbreviate as and at R2C1 τ2 R1C1 τ1

Thus

And we see that the loop filter has a zero at:

and as an integrator, has a pole at , and a gain of .

Rewriting into it's proportional and integral components, we get:

Open Loop Gain
We will create a Bode plot (by plotting the open loop gain) to see how adjusts the gain,
and the effect of the zero as adjusted with

The Open Loop Gain is the result of cascading the following components, resulting in a
product of their gains:

VCO:
Phase Detector:

Loop Filter:
Frequency Divider:

The product of the above is the "open loop gain" as:

Loop Equations

a_kv= 2*np.pi*600e6 # VCO gain in rad/v (from HMC733 datasheet)
a_kpd = 0.120 # Phase detector gain v/rad (from PFD1K datasheet)
a_lbw = 2*np.pi* 1e6 # target loop bw in rad/sec (cuz Dan said)
a_N = 150 # mid value for N (divider setting to get 15 GHz output)

since we'll iterate on loop filter gain constants, make the open loop gain a func
Note: numerator and denominator polynomials are entered in positive powers of s i
def gol_analog(tau1, tau2, N):
 return a_kv * a_kpd/(N*tau1)*con.tf([tau2, 1], [1, 0, 0])

Starting Loop Values

H(s) =
1 + sτ2

sτ1

1 + sτ2 = 0

s =
−1
τ2

s = 0 1
τ1

H(s) = +1
sτ1

τ2

τ1

τ2

τ2

KV /s
KPD

1+sτ2
sτ1

1/N

GOL(s) = =
kV kPD

Ns
1 + sτ2

sτ1

kV kPD

Nτ1

1 + sτ2

s2

In [4]:

We can get an initial value for by first neglecting the effects of by setting and
choosing a zero dB crossing on the Bode gain plot to be the loop BW.

The zero dB gain crossing is when:

With , the loop bandwidth.

With and the solution for becomes:

We'll then add the zero at (45° phase margin) or slightly below (higher phase margin) the
loop bandwidth for stability.

This will increase the bandwidth slightly, so then iterate on both from these starting values
to decrease the loop gain using , and increase or decrease while observing response on
Bode plot for desired gain and phase margin.

print(f"Target loop bw = {a_lbw:0.2f} rad/sec")

a_tau1_init = (a_kv * a_kpd)/(a_N * a_lbw**2)
print(f"Initial value for tau1 = {a_tau1_init:0.2e}")

Target loop bw = 6283185.31 rad/sec
Initial value for tau1 = 7.64e-08

To demonstrate show Bode Plot with tau2=0 resulting in the cascade of two integra
a_tau2=0
a_gol = gol_analog(a_tau1_init, a_tau2, a_N)

plt.figure()

__ = con.bode(a_gol, dB=True, Hz=True, omega_limits=[100, 20e6])
plt.subplot(2,1,1)
plt.title("Bode Plot")

Text(0.5, 1.0, 'Bode Plot')

τ1 τ2 τ2 = 0

|GOL(s)| = 1

s = jωc

τ2 = 0 |GOL(jωc)| = 1 τ1

τ1 = kV kPD

Nω2
c

τ1 τ2

In [5]:

In [6]:

Out[6]:

Figure

If the above Bode plot has a 0dB crossing on the magnitude plot when the frequency is 1
MHz: Success! We have properly set (a gain constant). The closed loop bandwidth will be
where the open loop frequency magnitude response crosses 0 dB. Adjusting will simply
move the gain curve up and down, and thus adjust the loop bandwidth.

As implemented thus far, with , the loop will not be stable, given the phase of the
open loop gain is at 180 degrees when the gain passes through 0. (The critera for stability
using the open loop Bode plot is for the phase to be < 180 degrees when the gain passes
through 0 dB).

This is where adding the zero with comes in.

The two poles at (DC) cause the Bode magnitude to drop -40 dB/decade, and the
phase be at -180° (-90° for each pole). The zero will add an increase to the magnitude +20
dB/decade, and a +90° increase to the phase at an intercept frequency given by:

If we place the zero right at the loop bw, this will provide 45° of phase margin.

If we rearrange/simplify the formula for open loop gain to show overall gain, poles and
zeros, we can get more insight into how we may adjust these parameters:

τ1

τ1

τ2 = 0

τ2

s = 0

fc =
1

2πτ2

From this we see that we can set the zero as , and move the gain up and down as
the ratio . And therefore we have independent adjustment of our loop bandwidth and
phase margin (which controls the damping factor).

inial values were tau2 = 1/lbw and tau1 = 1.4 x tau2 computed above for a 45 degr
then iterate to increase phase margin to increase the damping factor and keep the
end result after interating: tau2 = 2.3/lbw, tau1 = 2.7 x tau1 computed above

1/tau1 is the integral gain, and tau2/tau1 is the proportional gain

a_tau2 = 2.3/a_lbw # adjusts phase as 1/tau2, this will change the zeo crossi
a_tau1 = 2.7*a_tau1_init
a_gol = gol_analog(a_tau1, a_tau2, a_N)

plt.figure()

__ = con.bode(a_gol, dB=True, Hz=True, margins=True, omega_limits=[10000, 50e6])
plt.subplot(2,1,1)
plt.title("Bode Plot")
plt.show()

GOL(s) = =kV kPD

Nτ1

1 + sτ2

s2

K
τ1

1 + sτ2

s2

= K τ2

τ1

1/τ2 + s
s2

s = −1/τ2

τ2/τ1

In [14]:

Figure

Adjusting has a dominant effect on the phase, but because it reduced the slope of the
gain, it has a secondary effect on the bandwidth. We notice above that the zero crossing is
now higher than 1 MHz, which is fixed by reducing the gain (increasing).

From this we can then tweak (gain as the ratio of , and therefore bandwidth) and
(phase margin). If we want to reduce the ringing (increase the dampling factor), then we
need to increase the phase margin.

We could determine exact solution for the specific 2nd order PI Loop (such as has been done
by Floyd Gardner, "Phase Lock Techniques"), but this exercise in iterative tuning gives insight
into what to do for a broader range of applications.

Closed Loop
Example closed loop gains of interest are:

The gain from the reference input to VCO output, to determine tracking of the reference

The gain from the vco output to the vco output (to determine attenuation of VCO phase
noise)

τ2

τ1

τ1 τ2/τ1 τ2

ζ

GCL(s) =
GF (s)

1 + GOL(s)

Ref to VCO out

VCO out to VCO out

Closed Loop from Ref Input to VCO Output

a_gcl1 = a_N * a_gol/(1+a_gol)

good practice to always use the minreal to reduce the transfer function!
print(f"Transfer function before using minreal: {a_gcl1}")

a_gcl1 = con.minreal(a_N * a_gol/(1+a_gol))

print(f"Transfer function after using minreal:{a_gcl1}")

Transfer function before using minreal:
 8.029e+08 s^3 + 2.193e+15 s^2

s^4 + 5.352e+06 s^3 + 1.462e+13 s^2

2 states have been removed from the model
Transfer function after using minreal:
 8.029e+08 s + 2.193e+15

s^2 + 5.352e+06 s + 1.462e+13

Closed Loop from VCO in to VCO out

a_gcl2 = con.minreal(1/(1+a_gol))
print(a_gcl2)

0 states have been removed from the model

 s^2

s^2 + 5.352e+06 s + 1.462e+13

Damping Factor

GF1(s) = NGOL(s)

GCL1(s) = =
GF1(s)

1 + GOL(s)
NGOL(s)

1 + GOL(s)

GF2(s) = 1

GCL2(s) =
1

1 + GOL(s)

In [15]:

In [16]:

For a second order system the damping factor is the cosine of the angle to the pole from
the negative real axis

As damping factor approaches 0, rise time will get faster at the expense of more ringing and
overshoot.

As damping factor approaches 1, rise time and overshoot will decrease.

Once the damping factor is at 1, the poles are on the real axis, and the system is
"underdamped".

A damping factor close to 0.7 is typically desirable as it offers a good compromise for
balanceing rise time and overshoot/ringing considerations.

For a 2nd order system, the damping factor is the cosine of the angle to the pole
negative real axis.
A Dampling
print(f"Damping factor is {np.cos(np.pi-np.angle(con.poles(a_gcl1)[0])):0.2f}")

Damping factor is 0.70

Pole Zero Map
Becuase 2nd order systems are so common the pole zero mapping utilities in Python (and
Matlab/Octave) will include the option to superimpose lines of constant natural frequency
and damping factor. Higher order systems will also approximate a 2nd order system when
there are two poles closest to the axis (dominant poles) with other poles significantly
further to the left (~ >10x) into the left half plane.

plt.figure(figsize=(7,7))
__ = con.pzmap(a_gcl1, grid=True);

ζ

In [17]:

jω

In [29]:

Figure

Closed Loop Time Domain Response (Step)
Interpreting the step response results:

The step responses shown are for a normalized step at the input for an actual small signal
step (within the loops linear operating range). The response is for a step from 0 to 1, so in
this case 1 radian, and given the frequency multiplication of this loop, we get a 150 radian
phase step at the output (which then gets divided in the divider by 150, producing the equal
1 radian step at the other input to the phase detector).

plt.figure(figsize=(5,6))
plt.subplot(2,1,1)
plt.plot(*con.step_response(a_gcl1))
plt.xlabel("Time (seconds)")
plt.ylabel("Phase (Radians)")
plt.title("Step Response Ref In (one rad) to VCO Out")

In [33]:

plt.grid()
plt.subplot(2,1,2)
plt.plot(*con.step_response(a_gcl2))
plt.xlabel("Time (seconds)")
plt.ylabel("Phase (Radians)")
plt.title("Step Response VCO Out (one rad) to VCO Out")
plt.grid()
plt.tight_layout()

Figure

Closed Loop Frequency Domain Response

plt.figure()
__ = con.bode(a_gcl1, dB=True, Hz=True, omega_limits=[10000, 50e6])
plt.subplot(2,1,1)
plt.title("Frequency Response, Ref In to VCO Out")
plt.tight_layout()

In [34]:

Figure

Note that the gain for the lowwer frequency is consistent with
 dB consistent with a frequency multiplication from the

reference to the output (multiplying frequency multiplies phase).

plt.figure()
__ = con.bode(a_gcl2, dB=True, Hz=True, omega_limits=[10000, 50e6])
plt.subplot(2,1,1)
plt.title("Frequency Response, VCO Out to VCO Out")
plt.tight_layout()

20Log10N = 20Log10(150) = 43.5

In [35]:

Figure

Note the following phase noise plot from the HMC733 datasheet:

In the loop, the VCO is modelled as a pure VCO (with gain) followed by a summation
with the phase noise at the output:

KV /s

Thus the frequency response for "VCO Out to VCO Out" refers to the input at the noise input
to this summer, and the output at the output of the summer. For low frequency offsets in
phase noise fluctuations, the loop will track the phase noise and thus attenuate it according
to the frequency response given (and for the low frequency offsets, it will pass the reference
oscillator phase noise with gain according to .

Digital PLL Implementation Model
For a demonstration of a Digital PLL, we'll use the implementation below to capture and
track the 19 KHz pilot in an FM broadcast signal.

20 log10(N)

fs = 192e3 # sampling rate

acc_size = 48 # accumulator size in NCO
lut_addr=14 # LUT address size in NCO
lut_out=16 # LUT output size in NCO

Test Signal : FM Broadcast Pilot Tone

Open FM demodulated multiplexed FM Radio Broadcast signal downloaded from
https://www.sigidwiki.com/wiki/FM_Broadcast_Radio

with wave.open("./data/SDRSharp_20150804_205139Z_0Hz_IQ.wav", 'r') as f:
 # extract and plot waveform
 srate = f.getframerate()
 print(f"Sample rate is {srate/1000} KHz")
 signal = f.readframes(-1)
 # from bytes to int16
 signal = np.frombuffer(signal, dtype = "int16")
 params = f.getparams()

seperate I and Q channels to be 2 x array
fmIQ = signal.reshape(-1,2).T

fm_wfm = fmIQ[1] / np.std(fmIQ[1]) # signal is almost entirely on fmIQ[1] as a re

Sample rate is 192.0 KHz

def plot_spectrum(wfm):
 nsamps = len(wfm)
 win = sig.windows.kaiser(nsamps, 12)

 # the following scales by the coherent gain of the window to provide an accurat
 # of tones dB relative to full scale. It will overestimate the spectrum for noi
 # that is spread over multiple bins. To scale noise accurately, we would instea

In [42]:

In [37]:

In [38]:

 # by the non-coherent gain of the window (covered more in my DSP for Wireless C
 freq_out = fft.fft(wfm * win) / np.sum(win)
 freq_axis = fft.fftfreq(nsamps)
 freq_out = freq_out[freq_axis>=0]
 freq_axis = freq_axis[freq_axis>=0]

 plt.plot(freq_axis * srate, 20*np.log10(np.abs(freq_out)))
 plt.grid()

bandpass filter 19 KHz

r=.99
ftone = 19e3
wn = 2 * np.pi * ftone / srate
pilot = sig.lfilter([1-r], [1., -2*r*np.cos(wn), r**2], fm_wfm)

scale = 1.8*2**(lut_out) /2**(np.std(pilot)) # for scaling pilot to digital precis

pilot = (pilot * scale).astype('int')

plt.figure(figsize=(8,3))
plt.subplot(1,2,1)
plot_spectrum(fm_wfm)
plt.axis([0, srate/2, -100, 0])
plt.title("FM Broadcast Signal Spectrum")
plt.xlabel("Frequency (Hz)")
plt.ylabel("dBFS")

plt.subplot(1,2,2)
plot_spectrum(pilot/2**(lut_out-1))
plt.axis([0, srate/2, -100, 0])
plt.title("Bandpass Filtered 19KHz Pilot")
plt.xlabel("Frequency (Hz)")
plt.ylabel("dBFS")
plt.tight_layout()
plt.show()

Figure

Audio(fm_wfm, rate = srate)

In [39]:

In [40]:

In [20]:

compare scale of filtered pilot to "clean" reference signal
n = np.arange(len(pilot))
clean = 2**(lut_out-1)*np.cos(2*np.pi*19e3/srate *n)
plt.figure()

plt.plot(clean, label="ref")
plt.plot(pilot, label="filtered pilot")
plt.title("Confirming Scaling of Pilot")
plt.legend(loc="lower left");

Figure

The Pilot and Reference are not locked above as we see below with a zoom in at two
arbitrary locations near the start and end of the sequence:

range1 = np.arange(552400,552600)
range2 = np.arange(4303800,4304000)
plt.figure()
plt.subplot(2,1,1)
plt.plot(range1, clean[range1], label="ref")
plt.plot(range1, pilot[range1], label="filtered pilot")
plt.subplot(2,1,2)
plt.plot(range2, clean[range2], label="ref")

Out[20]:
0:000:00 / 0:31/ 0:31

In [41]:

In [43]:

plt.plot(range2, pilot[range2], label="filtered pilot")
plt.tight_layout()

Figure

If we multiply and filter the above signals, we can see what the phase is of the reference
relative to the 19 KHz pilot prior to locking to it:

def phase_det(tone, ref, f, fs, ntaps=91, fpass=None, fstop=None):
 '''
 running phase detector of x relative to y
 x: tone (1darray)
 y: reference (1darray)
 f: (approximate) frequency of tone (float)
 fs: sampling rate (float) same units as f
 ntaps: number of taps in filter
 fpass: filter passband corner
 fstop: filter stopband corner
 '''
 if fpass is None:
 fpass = 0.8 * f
 if fstop is None:
 fstop = f

 phase = (np.sign(tone) * np.sign(ref))* np.pi

 # filter to pass difference signal as phase and reject sum signal as 2f:
 coeff = sig.firls(ntaps, [0, fpass, fstop, fs/2], [1, 1, 0, 0], fs=fs)

In [104…

 # zero phase filter
 result = sig.filtfilt(coeff, 1, phase)
 return result

filtered_phase = phase_det(pilot, clean, ftone, fs, ntaps = 501, fpass = 500, fstop

Time Sequenced Component Model
This is not the Loop Model but a model of the actual implementation.

Below is a bit and cycle accurate Component Object model. A Component Object takes
inputs and provides outputs on each sample of a "master clock" for discrete time time
stepped simulations. Modelling with Component Objects is detailed in my course "Python
Applications for Digital Design and Signal Processing". This is a simulation of the actual
implementation which would capture non-linear effects, and after we'll develop the much
simpler Loop Model for comparison.

NCO Component:

def Nco(sum1=0, acc_size=28, lut_addr=14, lut_out=16):
 '''
 NCO as a Component Object
 Parameters are object initialation:
 sum1: initial state (count) for accumulator
 acc_size: accumulator precision in bits (wrap on overflow)
 lut_addr: look-up table address precision in bits
 lut_out: look-up table data precision in bits

 (fcw input size is one less than acc_size)
 Dan Boschen 9/25/2023

 To use:
 instantiate: my_nco= NCO(....)
 prime: my_nco.send(None)
 pass in fcw and pcw samples and get sample out for each clock cycle:
 output = my_nco.send((fcw, pcw))

 '''
 data = None
 while True:
 fcw, pcw = yield data

 sum2 = (sum1 + pcw) % 2**acc_size # max bit width acc_size
 sum2 = sum2 // 2**(acc_size - lut_addr) # phase truncation
 sum1 = (sum1 + fcw) % 2**acc_size # modulo acccumulator

 sine = math.sin((2 * math.pi * sum2) / 2**lut_addr)
 # maps -1/+1 sine to the signed digital range -2**(lut_out-1) to 2**(lut_ou
 data = round(((sine+1)/2 * (2**(lut_out)-1)- (2**(lut_out)-1)/2)-.5)

In [55]:

Loop Filter Component

def PropIntFilter(accum, integral, proportional):

 sum_out = accum

 while True:
 # allows for updating integral and proportional gain on each input sample
 error_sig = yield sum_out

 accum += error_sig
 sum_out = integral * accum + proportional * error_sig

Top Level DPLL Component Model

def Dpll(nco, loopfilter, integral, bitw):
 '''
 nco: instantiated and primed NCO Component: requires fcw, pcw inputs and provid
 fcw: initial state for nco input
 loopfilter: instantiated and primed Loop Filter Component: requires err input a
 bitw: bit width of input and output (currently limited to be the same)
 '''
 while True:
 signal_in = yield signal_out

 # phase detector
 phase_err = int((signal_in * signal_out)/2**(bitw-1)) # scales back to

 # loop filter
 fcw = loopfilter.send(phase_err)

 # NCO
 signal_out = nco.send((fcw, 0)) # no phase change input (pcw) used

Functional Tests

Functional Test of Loop Filter and NCO

In [56]:

In [57]:

Functional Test of Loop Filter and NCO
Simple Open Loop Test with P=0 (integrate only) resulting in ramping FCW

nsamps = 2**14 # number of samples ot simulate

instantiate and prime components
nco = Nco(sum1=0, acc_size=acc_size, lut_addr=lut_addr, lut_out=lut_out)
nco.send(None)

loop_filter = PropIntFilter(accum=0, integral= 2**(acc_size-lut_out-5), proportiona
loop_filter.send(None)

run sim
result = []
fcw_result = []

error = 1
for n in range(nsamps):
 fcw = loop_filter.send(error)
 fcw_result.append(fcw)
 result.append(nco.send((fcw,0)))

plot results
plt.figure()
plt.subplot(2,1,1)
plt.plot(fcw_result)
plt.title("Frequency Control Word")
plt.subplot(2,1,2)
plt.plot(result)
plt.title("NCO Output")
plt.xlabel("Time (samples)")
plt.tight_layout()

In [58]:

Figure

Functional Test of NCO and Phase Detector

Phase Detector

nsamps = 1000

create two NCO's offset in frequency
set initial fcw for 19KHz
fcw1 = int(19e3 * (2**acc_size)/fs) # frequency for nco1
fcw2 = int(20e3 * (2**acc_size)/fs) # frequency for nco2
print(f"{fcw1=}")
print(f"{fcw2=}")

In [59]:

instantiate and prime components
nco1 = Nco(sum1=0, acc_size=acc_size, lut_addr=lut_addr, lut_out=lut_out)
nco1.send(None)

nco2 = Nco(sum1=0, acc_size=acc_size, lut_addr=lut_addr, lut_out=lut_out)
nco2.send(None)

loop_filter = PropIntFilter(accum=0, integral= 2**(acc_size-lut_out-5), proportiona
loop_filter.send(None)

run sim:
result_nco1 = []
result_nco2 = []
result_pd = []

for n in range(nsamps):
 fcw = loop_filter.send(error)
 fcw_result.append(fcw)
 nco1_out = nco1.send((fcw1,0))
 nco2_out = nco2.send((fcw2,0))
 phase_err = int((nco1_out * nco2_out)/2**(lut_out-2))
 result_nco1.append(nco1_out)
 result_nco2.append(nco2_out)
 result_pd.append(phase_err)
 fcw = loop_filter.send(phase_err)

plot results
plt.figure(figsize=(8,5))
plt.subplot(2,1,1)
plt.plot(result_nco1)
plt.plot(result_nco2)
plt.title("Test NCO Outputs")
plt.subplot(2,1,2)
plt.plot(result_pd)
plt.plot(sig.filtfilt(np.ones(10), 10, result_pd))
plt.title("PD Output")
plt.xlabel("Time (samples)")
plt.tight_layout()

fcw1=27854294570325
fcw2=29320310074026

Figure

Closed Loop Simulation

nsamps = int(8*fs) # number of samples ot simulate; -1 = all samples

print(f"{nsamps=}")
print(f"{fs=}")
print(f"{acc_size=}")
print(f"{lut_addr=}")
print(f"{lut_out=}")

instantiate and prime components
nco = Nco(sum1=0, acc_size=acc_size, lut_addr=lut_addr, lut_out=lut_out)
nco.send(None)

tau1 = 3.756604e-5 # from d_tau1 in Digital Phase Lock Loop Model
tau2 = 305.57749 # from d_tau2...
print(f"{tau1=:0.5f}")
print(f"{tau2=:0.5f}")

other values determined:
LBW tau1 tau2
20 Hz 0.0037566 3055.774907364391
100 Hz 0.00015 611.154981472878
200 Hz 3.756604e-5 305.57749

integral = int(1 / tau1)
print(f"{integral=:}")

In [129…

proportional = int(tau2 / tau1)
print(f"{proportional=:}")

fcw_start = int(19e3 * (2**acc_size)/fs)
print(f"{fcw_start=}")
accum_state = fcw_start * tau1 # sets initial state at 19KHz
loop_filter = PropIntFilter(accum=accum_state, integral= integral, proportional=pro
loop_filter.send(None)

run sim
result = []
test_point = []

nco_out =0
error = 1
for sample in pilot[:nsamps]: #use pilot, clean,
 phase_err = (sample * nco_out) /2**(lut_out-1)
 # phase_err = np.sign(sample) * nco_out /2
 fcw = loop_filter.send(phase_err)
 nco_out = nco.send((fcw, 0))
 test_point.append(fcw)
 result.append(nco_out)

nsamps=1536000
fs=192000.0
acc_size=48
lut_addr=14
lut_out=16
tau1=0.00004
tau2=305.57749
integral=26619
proportional=8134407
fcw_start=27854294570325

plt.figure()
#plt.plot(result)
time = np.arange(len(test_point))/fs
plt.plot(time, np.array(test_point))
plt.xlabel("Time (seconds)")
plt.title("FCW")

Text(0.5, 1.0, 'FCW')

In [130…

Out[130…

Figure

plt.figure()
plot_start = int(.5*fs)
#plt.subplot(1,2,1)
plot_spectrum(np.array(result[plot_start:])/2**(lut_out-1))
plt.axis([0, srate/2, -100, 0])
plt.title("PLL Locked Output")
plt.xlabel("Frequency (Hz)")
plt.ylabel("dBFS")

Text(0, 0.5, 'dBFS')

In [131…

Out[131…

Figure

plt.figure()

plt.plot(time, result)
plt.plot(time, pilot[:nsamps])
plt.title("Locked NCO Output and Input")
plt.xlabel("Time (seconds)")

Text(0.5, 0, 'Time (seconds)')

In [132…

Out[132…

Figure

filtered_phase_OL = phase_det(pilot[:nsamps], clean[:nsamps], ftone, fs, ntaps = 50
time_axis = np.arange(nsamps)/fs
filtered_phase_CL = phase_det(pilot[:nsamps], result, ftone, fs, ntaps = 501, fpass
plt.figure(figsize=(8,4))
plt.subplot(1,2,1)
plt.plot(time_axis , filtered_phase_OL)
plt.xlabel("Time (s)")
plt.ylabel("Phase (rad)")
plt.title("Filtered Pilot Phase vs Time Before PLL")
#plt.axis(
plt.subplot(1,2,2)
plt.plot(time_axis, filtered_phase_CL)
plt.xlabel("Time (s)")
plt.ylabel("Phase (rad)")
plt.title("Extracted Pilot Phase vs Time After PLL")
plt.tight_layout()

In [133…

Figure

Digital Phase Lock Loop Model

Note the units used for error and FCW here are actual counts, so will match the digital values
at those nodes.

Open Loop Gain:

fs = 192e3 # sampling rate in Hz. We'll use normalized radian frequency in the mo

d_lbw = 2*np.pi* 200/fs # target loop bw in rad/sample

NCO

GOL(z) = H(z)kV kPD

z − 1

In [134…

Input on left is Frequency Control Word (FCW) Output on right is the digitized sinusoid as
the output of a Look-up Table (LUT) effectively containing one cycle of a sine wave.

For a small FCW, the accumulator will ramp up slowly. For a large FCW, the accumulator will
ramp up more rapidly.

The Most Significant Bits of the accumulator are used as the address for the LUT. The
accumulator wraps around on overflow, and thus produces a digitized sinusoidal output
waveform with a frequency directly proportional to FCW, with a full range of DC to half the
sampling rate.

Given a PLL implementation, we will work in units of phase, not frequency. In this context,
the NCO, like the VCO, is an integrator, as a "phase accumulator". The NCO gain for the loop
model is , where is the slope of the output frequency in radians/sample verus

the frequency control word FCW. Note similarity of VCO gain for analog loop as .

The frequency vs control word sensitivity is as shown in the plot below, resulting in

This is a good example of how the mapping from s to z for poles and zeros in vicinity of
 is simply when working in units of normalized frequency such that the time

index is in samples ().

kV /(z − 1) kV
KV

s

z = 1 s ↔ z − 1
T = 1

NCO
accum_size = 48
fcw_size = 47

d_kv= np.pi/2**fcw_size # NCO gain in rad/count

Phase Detector

precision = 16 # precision of both phase detector inputs
d_kpd = 2**(precision-1) # Phase detector gain counts/rad

PI Loop Filter

Open Loop Gain

In [135…

In [136…

H(z) = P + I = +
1

z − 1
τ2

τ1

1
τ1

1
z − 1

= =
τ2(z − 1) + 1

τ1(z − 1)
τ2z + 1 − τ2

τ1(z − 1)

since we'll iterate on gain constants, make the open loop gain a function

def gol_digital(tau1, tau2):
 return (d_kv * d_kpd / tau1) * con.tf([tau2, (1-tau2)], [1, -2, 1], dt=1/fs)

setting dt is what makes this a transfer function in z instead of s (digital inst
setting dt will not affect the decision to use normalized frequency or not (gains
but will effect the units on the horizontal axis for Bode plots

Starting Loop Values
Like we did for the analog 2nd order PLL, we'll first set and adjust (primary gain
control) such that the zero dB gain crossing is right at the loop bandwidth.

With , the open loop gain simplifies to:

Similar to estimating in the analog loop, but with added complexity of the unit circle on
the z-plane being the frequency axis. Therefore we set (like we set for the
analog loop), and determine such that

This becomes:

Assuming a positive and (when negative that is considered the negative feedback
for the loop and only positive gain values are used), then

Note for , (looking at that graphically on the complex plane
provides great intuition for this) and for these cases we end up with a similar equation to the
analog loop:

GOL(z) = H(z)kV kPD

z − 1

= ()()kV kPD

z − 1
τ2z + 1 − τ2

τ1(z − 1)

= ()()kV kPD

τ1

τ2z + 1 − τ2

(z − 1)2

In [137…

τ2 = 0 τ1

τ2 = 0

GOL(z)|τ2=0 = ()kV kPD

τ1(z − 1)2

τ1

z = ejωc s = ωc

τ1 |GOL(z)| = 1

τ1 = ∣∣∣
∣∣∣

kV kPD

(ejωc − 1)2

kV kPD

τ1 =
kV kPD

|(ejωc − 1)|2

ωc << 1 |(ejωc − 1)|2 ≈ ω2
c

τ1 ≈ , for ωc << 1
kV kPD

ω2
c

This is intuitively pleasing as we would expect the loop models to match the analog models
if we significantly oversample the loop. Since we are dealing with normalized frequencies in
the digital case (divide by the sampling rate), as the sampling rate increases, will get
increasingly smaller for the same loop bandwidth in Hz.

Since we are iterating after setting the initial values, this will be a sufficient estimate even for
higher frequency cases.

We'll then add the zero at (45° phase margin) or slightly below (higher phase margin) the
loop bandwidth for stability.

This will increase the bandwidth slightly, so then iterate on both from these starting values
to decrease the loop gain using , and increase or decrease while observing response on
Bode plot for desired gain and phase margin.

print(f"Target loop bw = {d_lbw:0.5f} rad/sample")
print(f" = {d_lbw/(2*np.pi):0.4f} cycles/sample")

d_tau1_init = (d_kv * d_kpd)/d_lbw**2
print(f"Initial value for tau1 = {d_tau1_init:0.2e}")

Target loop bw = 0.00654 rad/sample
 = 0.0010 cycles/sample
Initial value for tau1 = 1.71e-05

To demonstrate show Bode Plot with tau2=0 resulting in the cascade of two integra
d_tau2=0
d_gol = gol_digital(d_tau1_init, d_tau2)
print(d_gol)
plt.figure()

__ = con.bode(d_gol, Hz=True, dB=True)
plt.subplot(2,1,1)
plt.title("Bode Plot")
plt.axis([1, fs/2, -100, 100]);
plt.subplot(2,1,2);

 4.284e-05

z^2 - 2 z + 1

dt = 5.208333333333333e-06

ωn

τ1 τ2

In [139…

In [142…

Figure

Note the additional lagging phase due to the parastic delays in the implementation. This
will limit the minimum sampling rate to loop bandwidth ratio.

inial values were tau2 = 1/lbw and tau1 = 1.4 x tau1 computed above for a 45 degr
then to increase phase margin to increase the damping factor and keep the same lo
end result after interating: tau2 = 4fs/lbw, tau1 = 4 x tau1 computed above

d_tau2 = 2 / d_lbw # adjusts phase as 1/tau2, this will change the zeo
d_tau1 = 2.2 * d_tau1_init # adjusts gain as 1/tau1

print(f"{d_tau2=}")
print(f"{d_tau1=}")

d_gol = gol_digital(d_tau1, d_tau2)

plt.figure()

__ = con.bode(d_gol, dB=True, Hz=True, margins=True, method='frd', omega_limits=[1,
plt.subplot(2,1,1)
plt.title("Bode Plot")
plt.show()

d_tau2=305.577490736439
d_tau1=3.756604043507013e-05

z−1

In [150…

Figure

The vertical line in plots above on right is to show Nyquist, and is not part of the response.

Ignore the reported gain margin since the phase didn't cross 180 degrees it was unable to
detect the margin (add an extra delay sample delay to the transfer function by changing
denominator to [dpll.tau1, -dpll.tau1, 0] to see proper gain and phase margin computation
for that case. What is significant in the above plot is the phase margin and showing us the
zero crossing close to 400 Hz.

Closed Loop

Closed Loop from Ref Input to VCO Output

d_gcl1 = con.minreal(d_gol/(1+d_gol))

print(d_gcl1)

2 states have been removed from the model

 0.00595 z - 0.005931

z^2 - 1.994 z + 0.9941

dt = 5.208333333333333e-06

In [146…

Pole Zero Map

plt.figure(figsize=(9,9))
__ = con.pzmap(d_gcl1, grid=True)

Figure

Closed Loop Time Domain Response (Step)
See notes above in the Closed Loop Time Domain Response for the analog loop about
interpreting these plots. The plots show the response in the units of the output port to a
normalized step in the units for that input port. (so in this case a response in phase to a step
in phase).

plt.figure(figsize=(7,4))
plt.plot(*con.step_response(d_gcl1))
plt.xlabel("Time (seconds)")

In [147…

In [148…

plt.ylabel("Amplitude")
plt.title("Step Response Signal In to NCO Out")
plt.grid()
plt.axis([0, .025, 0, 1.5])
plt.tight_layout()

Figure

Closed Loop Frequency Domain Response
The vertical line in plot on right is to show Nyquist, and is not part of the response.

plt.figure(figsize=(7,5))
__ = con.bode(d_gcl1, dB=True, Hz=True, omega_limits=[2*np.pi * 10, 2*np.pi*fs/2])
plt.subplot(2,1,1)
plt.title("Frequency Response, Ref In to VCO Out")
plt.tight_layout()

In [149…

Figure

Mapping s to z
A deeper understanding of poles and zeros and there significance in placement on the s and
z planes is very helpful in control system design.

The simple "matched-z" mapping was used to demonstrate mapping from the Laplace
Transform to the z-Trasform using:

The graphics below show how a grid in the s plane would transform to the z plane.

The matched z transform is instructional but has limited use as it doesn't in all cases
maintain either the time or frequency domain response for the system. However when used
to map systems with poles only, it will provide an impulse invariant result identical to the
Method of Impulse Invariance (so retains the time domain response in the mapping for
those cases).

graphically showing the mapping from s to z for z=e^s
by drawing a

xbox = (-5, 0)
ybox = (-2.5, 2.5)
grids=20

z = esT

In [151…

vert = np.linspace(ybox[0], ybox[1],100)
omega = np.linspace(ybox[0], ybox[1], grids)

horiz = np.linspace(xbox[0], xbox[1],100)
sigma = np.linspace(xbox[0], xbox[1], grids)

yaxis = np.zeros(100)+1j*np.linspace(-3,3,100)
xaxis = np.linspace(-5,.5,100) + 1j*np.zeros(100)

plt.figure(figsize=(8,4))

s plane
plt.subplot(1,2,1)

plot vertical and horizontal axis
plt.plot(np.real(xaxis), np.imag(xaxis), 'k', linewidth=3)
plt.plot(np.real(yaxis), np.imag(yaxis), 'k', linewidth=3)

for s in sigma:
 plt.plot(np.real((s+1j*vert)), np.imag((s+1j*vert)), 'r')

for o in omega:
 plt.plot(np.real((horiz+1j*o)), np.imag((horiz+1j*o)), 'g')

plot dot at orgin
plt.plot(0, 0, 'ro')

plt.axis('equal')
plt.title('s Plane')
plt.grid()
zplane
plt.subplot(1,2,2)

#plot vertical and horizontal axis
plt.plot(np.real(np.exp(xaxis)), np.imag(np.exp(xaxis)), 'k', linewidth=3)
plt.plot(np.real(np.exp(yaxis)), np.imag(np.exp(yaxis)), 'k', linewidth=3)

plot the unit circle
circle = np.linspace(0, 2*np.pi, 100)
plt.plot((np.cos(circle)), (np.sin(circle)), 'k--', linewidth=0.5)

for s in sigma:
 plt.plot(np.real(np.exp(s+1j*vert)), np.imag(np.exp(s+1j*vert)), 'r')

for o in omega:
 plt.plot(np.real(np.exp(horiz+1j*o)), np.imag(np.exp(horiz+1j*o)), 'g')

plot dot at orgin
plt.plot(1, 0, 'ro')

plt.grid()
plt.axis('equal')
plt.title('z Plane')

Text(0.5, 1.0, 'z Plane')

Figure

If the grid in the s plane extended to and vertically, then the circle would be
completely filled. If the grid extends beyond vertically, the mapping will repeat in side the
unit circle (aliasing). Zoom in on the z-plane origin to see how the vertical grid lines to the
far left map with increasingly (logarithmically) closer spacing.

Out[151…

−π +π
±π

