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What is TorchSig?

• A system for RF machine learning

• Training new ML models

• Models for energy detection and mod rec

• Narrowband and wideband dataset generation

• Pretrained, downloadable models
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What is TorchSig? (cont.)

TorchSig.com Papers & Pretrained Models (models 
under development and likely to be 

replaced & reworked soon)
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What is TorchSig? (cont.)

• Code available github.com/torchdsp/torchsig
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Machine Learning Models

• TorchSig provides two types of models:

• “Narrowband” or modulation recognition model

• Operates on IQ samples

• Assumes signal is already channelized, basebanded and roughly time-aligned by an 

energy detector

• “Wideband” model

• Operates on spectrograms

• Able to locate multiple signals in time and frequency

• Also has modulation recognition feature
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Dataset Generation and Sig53

• Signal modulators:

• Frequency Shift Keying (FSK and GFSK)

• Minimum Shift Keying (MSK and GMSK)

• Quadrature Amplitude Modulation (QAM)

• Phase Shift Keying (PSK)

• Pulse Amplitude Modulation (PAM)

• On-Off Keying (OOK)

• Orthogonal Frequency Division Multiplexing (OFDM)

• Narrowband datasets: single signal channelized and time-aligned at complex 

baseband

• Wideband datasets: multiple constant-wave (continuous) or bursty signals 

across a wide bandwidth
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• Examples of wideband signals:

Dataset Generation and Sig53 (cont.)

8-FSK 128-QAM OFDM w/ 256 
Subcarriers

16-MSK16-QAM

32-PAM, 2-GFSK, 
4-GFSK, 16-

GMSK, OFDM w/ 
72 Subcarriers

BPSK, 8-PAM, 
32-QAM, 4-FSK, 

4-GMSK
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Recent Updates

• Three releases in 2024: 0.5.1, 0.5.2, 0.5.2.1, with more planned

• New features, improved DSP algorithms, faster speed, reduced memory, fixed 

bugs

• Image-only spectrogram-based dataset tools: create, transform, extract

• 10x speed improvement when using more than 32 workers

• Reduced file size stored to disk by using different storage datatype

• Improved randomization by fixing bug that caused some identical signals to be 

generated

• Tighter bounding boxes for FSK and MSK

• Reduced the sidelobes in resampling filters from -60 dB to -90 dB

• Improved anti-aliasing filtering, minimize energy wrapping around the –fs/2 and 

+fs/2 boundary for multiple cases and transforms
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Spectrograms

• Spectrograms display time-varying frequency content

• Also referred as “waterfalls”

• Easy for signals to be identified visually

• Foundational tool for training TorchSig ML algorithms

• ML to locate in both time and frequency

• “Bounding boxes”

Time

Freq
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Synthetic Spectrograms

• Simulating spectrograms require large memory and computational effort

• Creation and modulation of underlying signal(s)

• Noise and channel impairments

• Computation of spectrogram itself

• Can result in large databases (Many GBs, sometimes TBs)

• Slow to compute, therefore training must be done offline and in non-real time

• Synthetic Spectrograms are created directly, avoiding memory and 

computational burden

• Training can be done in near-real time, one spectrogram at a time

• Avoids large database problem
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Recycling and Reusing Spectrograms

• When training ML models, more data is better

• But what if limited data is available?

• Few-shot ML techniques can be used to expand dataset

• Impairments and transforms on original data augment the dataset

• Example: “recycling” narrowband spectrograms and building a frequency 

hopper dataset
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Direct Creation of  Synthetic Spectrograms

• Some modulations allow for direct creation of synthetic spectrograms

• Chirp-based waveforms (LoRa-like) can be simulated this way

• A rising chirp and a falling chirp are defined and assembled

Time

Freq
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Direct Creation of  Synthetic Spectrograms (cont.)

• Synthetic spectrograms assembled using Context Free Grammar (CFG)

• Establishes rules for how spectrograms are to be created and combined

• Example:

• Multiple chirps = a data symbol

• Header + multiple data symbols = data packet
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Composite Spectrograms

• Composite spectrograms further increase the dataset

• Combines multiple types of synthetic spectrograms

• Creates a more complex scene

Chirp

Frequency Hop

Time

Freq
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GNU Radio Block for Energy Detection

• OOT block gr-spectrumdetect performs energy detection with ML model

• Pretrained detect.pt YOLOv8x model against ISM band

• Uses a 1024x1024 spectrogram images

• specDetect block detects energy, spectrumPlot labels & displays spectrogram 

• example.grc flowgraph:
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GNU Radio Block for Energy Detection (cont.)

• specDetect parameters must match those the model is trained for

• It’s parametrizable, but not every feature is reconfigurable
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GNU Radio Block for Energy Detection (cont.)

• spectrumPlot displays bounding boxes for detected energy
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Future Work

• New tools and methods for integrating and labeling custom data sets, use of 

Label Studio

• Added support for HuggingFace and PyTorch, enable broader use and 

accessibility of TorchSig models

• Expansion of synthetic spectrogram generation feature, direct texturing and 

impairments to spectrograms

• Rework and expansion of analog modulations (AM, FM) and their variants 

(SSB, DSB, etc.)



Questions?
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