GNU Radio Software
Defined Radio University
Project-Based Learning | -
Using the Lime Mini SDR Dual, Steve Dunton, bennis
2.0, Raspberry Pi 5.0 e

Application Focus: Multi-Hop Mesh Networks
using the Cluster Duck Protocol

Outline:

1. GNU Radio Application Goal — Physical Layer Flexibility for a Multi-Hop Mesh Network
2. EES504 Software Defined Radio Course — Spring 2024: Getting up to Speed with GNU Radio
3. Our Summer 2024 Efforts to incorporate GNU Radio with the Cluster Duck Protocol

4. Summary and Next Steps.

GNU Radio Application Goal — Open-Source Multi-Hop
Mesh Network using the Cluster Duck Protocol

Data . APl ——
|
@ VWV @ S o) o iems
= ' |

systems

DuckLink Devices Papaduck Gateway OWL Cloud DMS

@)
Source: https://clusterduckprotocol.org/

Application Layer

OWL's Ducks — The Old
and the New

DUCK

Network Layer

‘ PROTOCOL ..

» Started Cluster-Duck-Protocol to run "Duck” LoRa Link Layer
Mesh Network Radios

Physical Layer

A single CDP Packet fits into the LoRa payload

0 8 16 20 21 22 23 27 25¢

Open source CDP Software, DIY radios:

SDUID | DDUID |[MUID | T |DT|HC|CDRC | Data (Maximum 229 Bytes)

» Sponsored a Senior Project which turned into

Summer Research using LimeSDR + Raspberry Pi SDUID ByteArray Source Device Unique ID

DDUID 08 Byte Array Destination Device Unique ID

MUID 04 Byte Array Message Unique ID

T 01 Byte Value Topic

DT 01 Byte Value Duck Type; 0=Duck Link 1= MamaDuck 2=
PapaDuck

HC 01 Byte Value Hop Count (The number of times that the
packet was relayed)

DCRC 04 Byte Value Data Section Cyclical Redundancy Code

Data 229 Byte Array Data Payload (could be sensor data or any

+vne nf toavt)

https://clusterduckprotocol.org
https://github.com/ClusterDuck-Protocol/ClusterDuck-Protocol
https://github.com/ClusterDuck-Protocol/ClusterDuck-Protocol

Open-Source Hardware and Software for the Cluster Duck Proto

—

Rev 1

and Our Vision for the "QuAD Pro"

QuUAD R1 vs. QUAD RC1 vs. QuAD RC2

—

QUAD RC1 QUAD RC2

mh s e

ReviB n curren

electronics solution, custom
kaging and software.

-GPS

-LORA

~WiFi

=Cluster Duck Protocol (CDP)

-E xisting Development

- Ongoing Feature additions

QUAD RC1 Based on RP Boards QUAD RC2 Based on Ti Board

-GPS -GPS

-LORA -LORA

-WiFi -WiFi (on processor)

-Cluster Duck Protocol (CDP) -Cluster Duck Protocol (CDP)

-In Progress -hardware security features

-First Hardware early spring quarter 24 -In Progress _

- Rev 2 planned for Fall Quarter -First Hardware late spring quarter ?

-Rev 2 planned for fall quarter

THIS IS THE FOCUS OF OUR EFFORT FOR GNU RADIO

Source: Dr Dennis Derickson

4

QUAD PRO

QUAD Pro Project
-GPS

-LORA

-WiFi (on processor)
-Cluster Duck Protocol (CDP)
-improved processing power
-video capable

QuAD-PRO

-frequency and modulation agile
-edge network machine learning
-In Definition and prototyping stage

-First Hardware theorized late S
Quarter 2024

Provided Hardware used for Senior Project, EES

Lime Mini 2.0 SDR

Raspberry Pi 5 kit

9%

GPS

Module +

Antenna
Po.

\Ffspberry Pi
amera

Summer Research,
QuAD Pro

Summer Research

SX1262 LoRa
Module /

Monitor + Keyboard
Setup

Test equipment: ¥ 5 "—
Tiny SA, Analog 2 —
Discovery Il. Test
Coax cables and

attenuators
Old , Additional Testing
generation Hardware
Ducks

(SX1276)

Software used, provided or found

T~

— \
|
GNU Radio Companion: https://www.gnuradio.org

THE FREE & OPEN SOFTWARE T

DragonOS Raspberry Pi Image:
https://sourceforge.net/projects/dragonos-pi64/

Dracon0S =

LoRa Out of Tree Module: hitps://github.com/tappareli/ar-lora_sdr s Sorrwase Derven Raro Tooisox

LimeSuite: hitps://github.com/myriadri/LimeSuite/
LimeSuiteNG: hitps://aithub.com/myriadrt/LimeSuiteNG/

Lime osysiems

https://www.gnuradio.org
https://sourceforge.net/projects/dragonos-pi64/
https://github.com/tapparelj/gr-lora_sdr
https://github.com/myriadrf/LimeSuite/
https://github.com/myriadrf/LimeSuiteNG/

LimeSDR Mini 2.0 Pros/Cons

Pros ___________________|Cons

Wide frequency range Limited output power

Highly configurable in GNU Radio Requires good foundation of SDR
without modifying FPGA understanding.

Small, Easy to transport and use in Requires a lot of USB power under
field. some situations.

Semi-affordable Complex for beginners. Not easy to

get started with as of 2024

Active software support, "next gen' Current software currently does not
LimeSuite work for LimeSDR Mini 2.0, no built-in
GR 3.10 OOT Modules

SoapySDR Support for GR3.10 Not ideal for a dedicated solution to
one modulation

Our Introduction to GNU Radio with the
LimeSDR Mini 2.0

» Senior Project: Exploration of Software Defined Radios in Mesh Networks

R

» Tasked with exploring using Software Defined Radios on a theoretical
Raspberry Pi Computer-based radio and pathfinding uses of the LimeSDR 2.0

Question: How do | learn to use my Lime Mini 2.0 and GNU Radio
quickly

Answer 1: Go to the wiki tutorials!
Answer 2: Also volunteer to TA and develop GNU Radio Lessons
for EES04: Software Defined Radio Laboratory

Dracon0S =

Sorrwase Derven]Ranio Tootsox

Getting Lime Mini 2.0 Working

on my Pi:

- First Step

- Took way longer than
expected

/

Needed DragonOS to be successful and to be
able to quickly get students onboarded

EE504 - Software Defined Radio Lab

» Students started with exposure to ADALM-PLUTO and MATLAB
from another TA, more in line with lecture topics

» Transitioned to learning GNU Radio in lab ~Week 6, giving 5 weeks
to learn GNU Radio and produce a unique final project

%> GNURadio

THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM

<\ MATLAB

Approach to Introducing GNU Radio to EE504 Lab

Get everyone's hardware working.
LimeSDR needs to pass its self-test

File Actions

Edit View Help
lam@liam-VirtualBox: /usr/src/gr-lara_sdr/test

Uam@lam-VirtualBox: ~

/

Low Pass Filter
Decimation: 4
Gain: 1
Sample Rate: 576k
Cutoff Freq: 100k
Transition Width: 10k
Window: Hamming
Beta: 6.7

Not titled yet - X

File Edit view Run Tools Help
- 'freq' < 100
D v D v X I%I = [:] L) & q
"center_freq' 0
EESOddemol 3 eeS0dtest 3 -
Standard Low-Pass Block
m Di
0
mDi
20
2 40
e
8§ 60
o
e
5 80
L]
i]
= 100
-120 |
-140 -
T T T T T T T
-15.00-10.00 -5.00 0.00 5.00 10.00 15.00
Frequency (kHz)
‘cutoff =—— 100

Start with very basic simulated
flowgraphs to introduce concepts
and blocks

Have students work up to

WBFM Receive

Quadrature Rate: 144k E—

Audio Decimation: 3

in

FM Demod
Channel Rate: 144k
Audio Decimation: 3
Deviation: 75k
Audio Pass: 15k
Audio Stop: 16k
Gain: 1

Tau: 75u

simple Modulators,
Demodulators

out

File Spuroce
File: ..ongeboh_ssshorse.jpg
Repeat: No
Aild begin tag: ()
Offset: 0
Length: 0

GFSK Mod
Samples/ Symbol; 2
Seasitiviby: I
BT: 1

PlutoSDR Sink
10 context URL; 152,165.0.1
L0 Frequency: 400
Sam ple Rate; 576k
Buffer sive: 32k
Cyclic Rl
Abtenuation TX1 (dB): 0
Filter Configuration: Autc
RF Bandwidth (Hz): 100k

Char To Float
Scale: 1

QT GUIT Time Sink
Name: from saurce fis
N beraf Poinks: 1.024k
Samiphe Rabe: 3,144
Patoscale: No

-
Assist students with
more advanced topics
and their final projects

The QuAD Pro Prototype

» 3 separate processes run at the same time, each loosely representing one part of the
"CDP Stack”

» Uses Redis, a simple IPC, to communicate between processes using message streams
Messages are queued up for tasks to complete to handle multiple messages

» Using separate processes with a defined IPC format allows us to in the future replace
the "PHY Process” with a proces that can select and run flowgraphs
Redis Streams

- Used for Inter-Process Communication

- Broke 3 processes up along the lines of the 3 layers of CDP
stack

- Allows for program modularity and independence

Web Interface CDP Handler $X1262 Process
« Uses Raspberry Pi's Wifi Chip to « Encodes, decodes incoming « Threaded, one thread handles |PC.
host hotspot. Webserver is hosted messages and routes them to one thread handies SPI/LoRa
on port 5000 where devices can proper process received.
connect and see splash page « Performs mesh-network logic such « When encoded CDP packet is
« Sends out user messages to be <:> as multi-hop. connecting to DNS, <:> received, process switches the
decoded and sent out over LoRa efc. SX1262 to fransmit and sends it
« Displays incoming decoded « Stores system information such as « Received packets are sent out as
messages to user Duck ID and type. messages to be decoded
« Webserver "Form" has options for « Handles majority of IPC logic « Can queue up messages to be
settings for CDP and PHY Layers transmit/received if processes
must be restarted

GNU Radio for QUAD Pro | s \
Summer Research

» Protoype "QuAD Pro" Software
developed and in debugging phase:
(QUAD pro github)

o SX1262 Driver, Hotspot + Web-server and
CDP Packet code all written by students

lllllll
“HI

SPI

o Efforts in the 10-week program were to
Interface

make a basic system others can debug,
improve, and eventually use with SDR
applications

» Preliminary "Robustness” and "Reliability”
tests comparing SDR to old and new
Semtech SX1276, SX1262 Transceivers.

» Improvement of LoRa and FSK
Flowgraphs to minimize weaknesses and
open up potential interfacing to other
processes \

Raspberry
Pi5

I e e e e e e

T e e e e en e» e e e e e e e e e e e - - - -

Existing Solution
(Duck Rev1)

-_—eee e e e e e .-

SX1262 LoRa and FSK Transcelver

Dual modem transceiver (LoRa/FSK).
Frequency range: 150 - 960 MHz.

Data rate: FSK 300kbps, LoRa — aoc [M\|7] Modem
62.5kbps AT]
) LPF
L PA PLL _\
< |

Max RF Output Power 22 dBm -
Low power consumption —

» Objective: Compare the reliability = i:- -

and performance of SX1262 and
LimeSDR Mini 2.0 using FSK/LoRa
modulation across configurable
parameters.

SX1262 Block Diagram !
Source: Semtech Corporation, SX126
Datasheet, [Datasheef]

https://www.mouser.com/datasheet/2/761/DS_SX1261-2_V1.1-1307803.pdf

LoRa and FSK Through GNU Radio - Can SDR

compete with the SX1262

> Why Compare FSK & LoRa on SDR vs. SX1262?
» Application: Both have been proposed to be used on QuAD Pro

» Flexibility: Can SDR quickly change LORA/FSK parameters like
the SX1262?

Dedicated Performance: SX1262 is hardware-optimized, how
does SDR stack up?

Y

» Real-World vs. Emulated Results: Practical insights into
differences in reliability and use cases

» Expectations:

> SDR: Adaptable, great for testing and prototyping but more
likely to be susceptible to noise or demodulate incorrectly.

» 8X1262: Tuned for efficiency and real-world applications,
much more power efficient than SDR. Likely to take slightly
longer to set up even with given code than SDR

)
@
c
W ¢
o
¥
L
=
AN
<
Rt
N
o
1
™
\0
o~
n

AN SEMTECH

e

:
. a LJ()O_O

SDR Flowgraph vs New Duck Transceiver vs
Old Duck Transceiver e

» Bit Error Rate and Packet Drop frequency are our two
main points to compare

» Each hardware set is going to be slightly different

SX1276: (LoRa only)
» Onboard Revl Duck, meaning codeis runona T-Beam board

» Outdated board doesn't work with newest ESP Drivers -> RadioLib
Doesn't work -> FSK not possible. Used other LoRa library

S$X1262:
» Uses GPIO pins of Raspberry Pi 5, WiringPi to control

» Also uses RadioLib with custom HAL code. Can compare FSK

SDR:
» USB Port of Raspberry Pi 5, requires drivers on DragonOS image (or
proper version of LimeSuite) =
» Flowgraphs can differ from true PHY, ability to add functionality not - Lg,,Ra

possible with Semtech Transceiver j Ay SEMTECH

LoRa on GNU Radio — gr-lora_sdr

R Cpent i e » Alltrue LoRa blocks were built b
| [— tapparel;:
;‘5:}.“““” ;E._.::.“"‘“ https.//github.com/tapparelj/gr-
writeBacks tore eiteBacks tone lora_sdr. Probably wasn't going to
(T File Transmit) able to do this myself with <2 month
— = of GNU Radio experience
Add begin tag: [
Length & » Originally built flowgraphs for Senior
- Project to encode+decode CDP packet
i.’.’.ﬁ“: with custom blocks. Limited success
\ & % due to packet corruption and perhaps
SX1276 timing
4":".’:“:.‘:"1‘;.‘“‘“ comrtocn 5 ___File Receive ») Added blocks for more advanced
e : 1 o . 0 e 55 e read/write options. Added confi
' L be used for semi-automated

Deinterleaver

https://github.com/tapparelj/gr-lora_sdr
https://github.com/tapparelj/gr-lora_sdr

def

FSK Modulator/Demodulator

self.samp _rate = samp rate
self.fsk deviation = fsk_deviation
self.center_freq = 0
self.phase inc0@

self.phase = 0

work(self, input_items, output items):
out = output_items[0]
in@ = input_items[0]

Process the input data
if len(in®) > 0: # Check for data
for i in range(len(in®)):
if in@[i] == 0O:
self.phase += self.phase inc@®
else:
self.phase += self.phase incl
out[i] = np.exp(1lj * self.phase)
if self.phase > 2.0 * np.pi:
self.phase -= 2.0 * np.pi
else:
print("Received empty input data") # no data

return lLen(out)

class fsk demod(gr.sync_block):

= 2.0 * np.pi * (self.center_freq - self.fsk deviation) / self.samp_rate
self.phase_incl = 2.0 * np.pi * (self.center_freq + self.fsk deviation) / self.samp_rate

FSK Demodulation
Samp_Rate: 500«
Fsk_Dewviation: 100«

def _ init__ (self, samp rate=1le6, fsk deviation=500e3):
gr.sync_block.__init__ (
self,
name='FSK Demodulation',
in_sig=[np.complex64],
out_sig=[np.int8]

self.samp rate = samp_rate
self.fsk deviation = fsk deviation

def work(self, input items, output items):
in®@ = input_items[0]
out = output items[0]

for i in range(1l, len(in@)):|
phase diff = np.angle(in@[i] * np.conj(in@[i-11))
out[i] = 1 if phase diff > 0 else 0
return len(output items[0])

FSK on Gnu Radio

» Implemented a packet based

system establishing a link between !
2 LimeSDR mini-2.0s using FSK ot

modulation.

» A CRCis calculated and used as our
basic check if a packet is transmit

and received correctly

.

Read file and initialize
chunk index chunk_index +1

Add preamble,
Split payload into 229 header, and chunk
byte chunks index to front of
payload

Matching filter FSK Modulation
network Block

/Recieve via Limesdr Mir‘liZ.O/

Matching filler | FSK Demodulation
network 7 Block
Extracted header byte|
Read payload and
calculate CRC

y
/TranEml via Limesdr Mini 2.0 /L

sl Mol e s rats e e e rake | | 0 roe
d— N L L e i | | e e o

Testing setup LoRa Porsmoters Tosiod |
E{E;EEEE 125, 250, EDﬂtHzé

Raspberry Pi 5, LimeSDR Mini 2.0
LoRa TX Flowgraph
+20dB TX Power

Raspberry Pi 5, LimeSDR Mini 2.0
LoRa RX Flowgraph
+20dE RX Power

= i

Raspberry Pi 5, SX1262 via SPI i Raspberry Pi 5, §X1262 via SPI
RadioLib based Automated TX i 1m Free Space RadioLib based Automated RX
+1, 10, 22dBm TX Power ! (-31.7dB) :
IllllllllllllIlIlIlIlIlllllllllllIIEIIllllllIlIlIlq:llllllllIlllllllllllllllllllllllll
Duck Rev1 (T-Beam, $X1276) : i Duck Rev1 (T-Beam, $X1276)
RadiolLib based Automated TX d i RadioLib based Automated RX
+1, 10, 22dBm TX Power :

U

Testing setup FSK

I
BitRate: 4.8, 9.6, 19.2, 76.8, 153.6kbps |
Freq. Deviation: 10, 25, 50, 75, 100kHz |

Raspberry Pi 5, LimeSDR Mini 2.0 Raspberry Pi 5, LimeSDR Mini 2.0
FSK Packet TX Flowgraph - FSK Packet RX Flowgraph
+20dB TX Power +20dB RX Power
lllllllllllllllllllllllllllllllllll hl1lrl“l|:lrlElEl$Eglll L I I I I O I R

(-31.7dB)

Raspberry Pi 5, $X1262 via SPI i
RadioLib based Automated TX
+5, 10, 20dBm TX Power

Raspberry Pi 5, $X1262 via SPI
RadioLib based Automated RX

Testing setup

LoRa Performance Comparisons

Notes:
- Experienced abnormally high error rates/packet losses at extremely low data rates

- LoRa OOT module is restricted. "Requires too many taps" for extremely low data rate demodulation, |.E. these could not b
compared with dedicated LoRa transceivers

SX1276/SX1262:
- Similar "low data rate problem" on both modules

- When packets were properly received, the SX1262 performed better in bit errors. More packets dropped led to the seemingly
worse performance

Lime Mini 2:
- Consistent performance, much more susceptible to noise and gain settings
- Bit errors are to be expected unless settings are "perfect”

06 - Average BER vs Data Rate (Averaged Across Power Levels) 0.08 1’ \ Average BER vs Data Rate LimeSDR Mini 2.0 . ..
/\‘ SF=7 SX1 262] .“ SF=7 lee Mlnl 2
! ® SF=9 | ® sSF=9
0.5|,. | ® SF=11 0.07 q ® SF=11
\ [} I
\. / 006 o 1
-
04 9 I
e x 0.05 m\ /
w Ll -
))
03 S 0.04
o e
Qo)
= =
< < 0.03
02r
0.02 |
01+ Y
@ o 0.01 | ®
0._. 1 1 1 1 Or 1 1 1 1 |
0 5 10 15 20 25 0 5 10 15 20 25

Data Rate (kbps) Data Rate (kbps)

FSK Performance Comparisons

Performance at Lower Bit Rates (4.4 kbps-76kbps) Performance at Higher Bit Rates (153.6 kbps+)

*SX1262: *SX1262:
* PER: 0% * PER: Increases up to 4% at 20 dBm at Fdev of 10kHz.
« BER: 0% * BER: Increases up t0 9.84%.
* Reliability: Excellent, error-free communication at low + Challenge: Significant errors, less reliable at high bit rates.
data rates. *GNU Radio LimeSDR Mini 2.0:
*GNU Radio LimeSDR Mini 2.0: * PER: Consistent 2.94% across all configurations.
* PER: 2.94% * BER: Typically, 0.00% to 0.13%.
+ BER:0.13% + Advantage: Maintains steady performance even at higher bit rates.
« Reliability: Consistent performance, moderate error
rate.
16 Average BER vs Bit Rate (FSK LimeSDR Mini 2.0)) Average BER vs Bit Rate (FSK SX1262)
14 \ 0.025
l\.. ! ® BitRate: 4800
<~ ® BitRate: 9600 <=
121 © BitRate: 19200 I o
® BitRate: 76800 0.02 \ !
N ® BitRate: 153600 ~
z ol X 0015} ® BitRate: 4800
w o ® Bit Rate: 9600
o % © BitRate: 19200
o s ® BitRate: 76800
5 061 5 0.01 o BitRato: 153500
04}
0.005
02F
0 ° e : — @ 0 'e0-® ‘ e : ‘ : ‘
0 2 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Bit Rate w104 Bit Rate «10%

SX1262

Lime Mini 2

Summarizing Results

Code used for all tests and results can be found in "tests" folder on our
GitHub: https://github.com/limccart7/GRCon-Project

"Old" 1276:

Could not test FSK because of older hardware compatibility issues
Not as frequency/parameter agile as newer chip

SX1262:

Best performance in terms of BER and packets dropped
Using Raspberry Pi GPIO pins made setup, interacting with the chip
slightly more difficult

Lime Mini 2:

Not ideal for "high end" situations, higher BER and much more likely to
drop packets

Flowgraphs give us the ability to retransmit on CRC check failure, other
ways of mitigating shortcomings

https://github.com/limccart7/GRCon-Project

Future Work - A Frequency and Modulation
Agile Transceiver for Raspberry Pi/QuAD Pro

» Use "QUAD Pro" Prototype's Inter-Process-Communication to integrate SDR Flowgraphs wi
ClusterDuck Protocol

» Develop a program that configures the parameters of flowgraphs and starts them. Eventual g
is to have a system that can quickly change its modulation and parameters based off userinp

Web Interface CDP Handler S$X1262 Process
« Uses Raspberry Pi's Wifi Chip to « Encodes, decodes incoming) I:;e{;‘::zga%"a‘;g:gagp'ﬁ‘:g: IEC,
host hotspot. Webserver is hosted messages and routes them to received
on port 5000 where devices can proper process 2 .
connect and see splash page « Performs mesh-network logic such w “When e;coded cap _;:a;‘:ket"l‘s
« Sends out user messages to be <:> as multi-hop, connecting to DNS, <:> 'Seﬁ'z";z t:?acr?;ri:?;;z Se:n dseit
decoded and sent out over LoRa etc. o RecGNad DAS St st
« Displays incoming decoded « Stores system information such as pt b5 decodad
messages to user Duck ID and type. . g:ﬁ?ug:fe zp meggagzs to be
« Webserver "Form"” has options for « Handles majority of IPC logic ! I
settings for CDP and PHY Layers :L%’g'g:’:ggg‘r’é‘:’" blbcessos
« Potential for FSK instead of LoRa Proposed
with the same chip FSK Mode
O M N | LR s O M NS NS NS NS S N N O G G G G O oy
Other Sensor/Application /
S
« IPC Message format is defined, [
just need to send the proper LoRa
information and data payload to | SDR Process
CDP Process
+ GPSis an example that has | « Selects a flowgraph to run based EEESSS
already been integrated on the off of user inputsettings
gahl:rigrfdidales depend on PHY I &, SO (ot S0 bfen < »” ! \
o flowgraphs without disrupting other
constraints on data rate, ability for | Sy R e = ’
CDP to parse and recombine « Messages will queue in stream if LimeSDR
information | flowgraph is not running/process is
not ready to handle them
| « LimeSDR is able to run TX and RX 1-\) OFDM
at the same time, may not have to
| “switch modes” to transmit 2
| Proposed "SDR .
\ |Process" to replace or ETC
~Supplement $X1262 e e e s
Transceiver

a9
Questions

Links, Further Reading

Our GitHub, again: https://github.com/limccart//GRCon-Project

Main QuAD Pro Prototype Summer Research:
https://github.com/limccart7/QuAD-Pro-Prototype

References:

https://clusterduckprotocol.org

https://github.com/tapparelj/gr-lora_sdr

https://cemaxecuter.com (DragonQS)

https://github.com/limccart7/GRCon-Project
https://github.com/limccart7/QuAD-Pro-Prototype
https://clusterduckprotocol.org/
https://github.com/tapparelj/gr-lora_sdr
https://cemaxecuter.com

	Slide 1: GNU Radio Software Defined Radio University Project-Based Learning Using the Lime Mini SDR 2.0, Raspberry Pi 5.0 Application Focus: Multi-Hop Mesh Networks using the Cluster Duck Protocol
	Slide 2: Outline:
	Slide 3: GNU Radio Application Goal – Open-Source Multi-Hop Mesh Network using the Cluster Duck Protocol
	Slide 4: OWL's Ducks – The Old and the New
	Slide 5: QuAD R1 vs. QuAD RC1 vs. QuAD RC2 vs. QuAD-PRO
	Slide 6: Provided Hardware used for Senior Project, EE504 and Summer Research
	Slide 7: Software used, provided or found
	Slide 8: LimeSDR Mini 2.0 Pros/Cons
	Slide 9: Our Introduction to GNU Radio with the LimeSDR Mini 2.0
	Slide 10
	Slide 11: EE504 - Software Defined Radio Lab
	Slide 12: Approach to Introducing GNU Radio to EE504 Lab
	Slide 13: The QuAD Pro Prototype
	Slide 14: GNU Radio for QuAD Pro Summer Research
	Slide 15: SX1262 LoRa and FSK Transceiver
	Slide 16: LoRa and FSK Through GNU Radio - Can SDR compete with the SX1262
	Slide 17: SDR Flowgraph vs New Duck Transceiver vs Old Duck Transceiver
	Slide 18: LoRa on GNU Radio – gr-lora_sdr
	Slide 19: FSK Modulator/Demodulator
	Slide 20: FSK on Gnu Radio
	Slide 21: Testing setup LoRa
	Slide 22: Testing setup FSK
	Slide 23: Testing setup
	Slide 24: LoRa Performance Comparisons
	Slide 25: FSK Performance Comparisons
	Slide 26: Summarizing Results
	Slide 27: Future Work - A Frequency and Modulation Agile Transceiver for Raspberry Pi/QuAD Pro
	Slide 28: Questions
	Slide 29: Links, Further Reading

