
GNU Radio 4.0:
Use-Cases at the GSI/FAIR Accelerator Facility
& an Overview of New Features and Significant Enhancements

Ralph J. Steinhagen1

on behalf of the GR Architecture Team:
Josh Morman2, Derek Kozel2, John Sallay2, Björn Balazs3, Ivan Čukić3,
Matthias Kretz1, Alexander Krimm1, Semën Lebedev1, Frank Osterfeld3, …

1GSI, Darmstadt, Germany, 2 GNU Radio 4.0 (lead),
3KDAB Berlin, Germany

CC BY-NC-SA 4.0

● Who we are.

● Why we use and invested into GNU Radio.

● Why to move towards GNU Radio 4.0?
- only quick overview of highlights, details and tutorials on GitHub, Indico & YouTube

● Quick Q&A
- more ample time during session this afternoon – 1’30”

P
ho

to
: D

. F
eh

re
nz

/G
S

I/F
A

IR
, A

pr
il

20
23

 GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany (est. since 1969)
 Shareholders: federal government (90%), Hesse (8%), Rhineland-Palatinate (1%), Thuringia (1%)
 Further locations (Helmholtz Institutes) in Mainz and Jena

 Hosts: FAIR – Facility for Anti-Proton-and-Ion-Research (est. since 2010)
 Employees: approx. 1,580

We explore
the universe…

…in the lab.

P
ho

to
: J

. H
os

an
/G

S
I/F

A
IR

, “
N

A
S

A
, E

S
A

, t
he

 H
ub

bl
e

H
er

ita
ge

 T
ea

m
 (

S
T

S
cl

/A
U

R
A

),
 A

. N
ot

a
(E

S
A

/S
T

S
cl

),
 a

nd
 th

e
W

es
te

rlu
nd

 2
 S

ci
en

ce
 T

ea
m

”

Anti-HydrogenWhat happened to Anti-Matter?

What are the smallest
building blocks of matter?

How, Where
and When were they created?

P
ho

to
:

N
A

S
A

How are chemical elements
formed in stellar explosions? P

ho
to

: N
A

S
A

, E
S

A
, G

. D
ub

ne
r

(I
A

F
E

, C
O

N
IC

E
T-

U
ni

ve
rs

ity
 o

f B
ue

no
s

A
ire

s)
 e

t a
l.;

 A
. L

ol
l e

t a
l.;

 T
. T

em
im

 e
t a

l.;
 F

. S
ew

ar
d

et
 a

l.;

V
LA

/N
R

A
O

/A
U

I/N
S

F
; C

ha
nd

ra
/C

X
C

; S
pi

tz
er

/J
P

L-
C

al
te

ch
; X

M
M

-N
ew

to
n/

E
S

A
; a

nd
 H

ub
bl

e/
S

T
S

cI

What does matter look like in the most heavy
objects of our universe, the neutron stars? P

ho
to

: P
en

n
S

ta
te

 U
ni

ve
rs

ity

… provide a research platform
to produce and study rare cosmic matter
in the lab using particle accelerators.

a la carte:
protons, anti-protons, (rare) isotopes ...

discovered at GSI/FAIR

stable nuclei

known nuclei

number of neutrons
(defines the isotope)

nu
m

be
r

of
 p

ro
to

ns
(d

e
fin

e
 th

e
el

em
en

t)

protons
& anti-protons

 Precise, gentle and
very successful!

 Treatment of
440 patients at GSI

 Established and in clinical
operation in
Heidelberg and Marburg

 At GSI: further R&D

P
ho

to
: A

. Z
sc

ha
u/

G
S

I

Applications: e.g. Cancer Therapy with Heavy Ions

P
ho

to
: J

. H
os

an
/H

A
 H

es
se

n
A

ge
nt

ur

P
ho

to
: G

. O
tto

/G
S

I

P
ho

to
: J

. H
os

an
/G

S
I/F

A
IR

Intensity
10‘000 x

more particles

Quality
maximise precision/

selectivity

Output Power
10-100 x more

Versatility
all chemical elements/ions

and antiprotons

P
ho

to
: G

. O
tto

/G
S

I/F
A

IR

… will accelerate Particles with unprecedented:

production of
new nuclear matterproduction of

anti-protons

UNILAC
linear accelerator SIS18

accelerator SIS100
accelerator

FRS

ESR

CryRing

HESR

CR
Key: Multi-User Parallel Operation:
(aka. multi-mission, multiplexing, …)
→ frequent reconfiguration of
 Facility, Accelerator, Particle Beams & Devices
→ same device is used by multiple users
 and w/ multiple settings

P
ic

tu
re

:
io

n4
2,

 D
. F

eh
re

nz
, G

S
I/F

A
IR

 25 accelerator and experimental
structures,
labs and other operation
and supply structures

 Underground accelerator ring
with a circumference
of approx. 1,100 m

 Around 150,000 m² of total area

 ~ 3000 researchers
 ~ 400 institutes
 50 countries &

11 share-holder (states)

… a flexible flow-graph-based
signal/event processing toolkit

What is ...

free/libre open-source software

& core:

Software-Defined-Radio (SDR): shift of traditional
radio-frequency (RF), signal- and event-processing
implementations from Hard- to Software

… a high-performance
signal-processing toolkit.

20+ Years of Expertise,
Modernised for Today
● Community-Driven,
● Streamlined, and
● Ready for Tomorrow

Bunch Merging Gymnastics @ SIS18 Dieter E. Lens et al.

fast event-processing (bursts): 1 us frame/segment every 5-10 us

fast time axis [us → ns]

sl
ow

 ti
m

e
ax

is
 [m

s
→

 s
]

RF Particle Beam Diagnostics – Frequency Domain
Energy and Momentum distribution tracking @ SIS18 Alexander Krimm et al.

continuous tracking of momentum (carrier wave) offset/distribution

RF Particle Beam Diagnostics – Frequency Domain
Schottky-based Mass Spectroscopy @ ESR S. Sanjari et al.

60 MHz

245 MHz

410 MHz

Upgrade goals:
● move offline

→ online processing
● stop accelerator

on rare particle detection
↔ “squelch” analogy

● vendor neutrality,
maintainability, …

N.B. link between
event-driven data
processing and
packet-modem!!

GNU Radio & Beam-Based Services
driven by functional need for distributed middle-tier processing;

A) aggregation and sanitisation of source device data
(from multiple devices, experiments, TGA, archiving system, ...)

B) generic numerical signal-, data- and domain-logic- post-processing
(performance and online reconfiguration requirements)

C) output of feedback control signals to other systems and services
“take the best and leave the rest” – provides & is strongly inspired by similar functionalities,
concepts, and successful systems at GSI, FAIR, and CERN

low-level hardware

..

.

particle beam

>100k diagnostics sensors >1000 magnets, RF cavities, ...

Experiments
(energy, position, particle-type, ‑angle, ‑spot size,

‑spill‑rate, bunch-length, ...)

O(<2 GS/s)

O(<250 MS/s)

O(<1 MS/s)

experiments/
instrumentation

feedback controllers

(sub-domain specific)

setting
supply

user-interfaces

micro-services

x2k
device

controllers

 ns-level timing

x15 x Nacc

f(⟨input ⟩)→⟨actuator ⟩sensor data
RT / cycle-to-cycle corrections

x1k

digitizer

DAC
surrogate & ‘digital twin’

virtual accelerators

beam-based controls applications
(interactive, expert. & monitoring/web-type)

JAPC,
 ,
...
(via OpenCMW)

experiments/
user

Generic OpenDigitizer Integration @ GSI/FAIR
reimplementation: https://github.com/fair-acc/opendigitizer

few hundred devices & middle-tier services

20

https://github.com/fair-acc/opendigitizer

Open Common Middle Ware – a RPC/Majordomo Implementation
https://github.com/fair-acc/opencmw-cpp

REST

HTML

CmwLight*

...

OpenCMW
(straight, type- and unit safe)

ZeroMQ RFC
7/MDP & 18/MDP

ext.
user

Majordomo Broker
(event processor)

Worker#1
(event Processor)

REST

CmwLight*

...

OpenCMW
(straight)

Client
(event source)

“Light-Weight” Worker
(event Processor)

Digitizer HW

Worker#2
(event Processor)

Worker#4
(e.g. user-provided)

MDP

user call-back

deserialise
serialise

high-performance
lock-free queues

20

https://github.com/fair-acc/opencmw-cpp
https://rfc.zeromq.org/spec/7/
https://rfc.zeromq.org/spec/18/
https://rfc.zeromq.org/spec/18/

Generic OpenDigitizer Impressions
https://fair-acc.github.io/opendigitizer/

https://fair-acc.github.io/opendigitizer/

Broaden Cross-Platform Support: UI Impressions WIP
GCC, Clang & Emscripten

modify visualisations &
UI layout, ...

change signal processing/analysis both in
● the Oscilloscope/SDA-like UI
● the remote front-end controller (FEC)

store & recall default views:

Tech Demo:

https://fair-acc.github.io/opendigitizer

https://fair-acc.github.io/opendigitizer/

Why we invest into GNU Radio 4.0beta

https://www.gsi.de/en/work/forschung/open-science

● GSI/FAIR uses, supports, and promotes
F.A.I.R. standards, Open-Science and FLOSS

● contributions tackle our specific in-house use-case:
– high-performance, continuous & event-based signal- and data-processing

enabling high-level beam-based diagnostics and feedback control loops
– multi-user, multi-mission parallel operation in a large physically distributed environment
– easier onboarding & more flexibility during commissioning and operation
– visual flow-graphs: bridging the technology gap between experts with the required

domain- and those with the necessary RSE-expertise (C++, 24h/7 operation, …)
● notably: enables more staff & users to meaningful contribute to GSI/FAIR

● share technology with community, public organisations, and industry
– avoid ‘re-inventing the wheel’ – co-invest and share maintenance efforts
– invest into open-standards, vendor neutral interfaces, common infrastructure
– building up competencies ↔ helps retaining/hiring/attracting new talents

https://www.gsi.de/en/work/forschung/open-science

GNU Radio Timeline

20001961

BLODI
(BLockDIagram)

&
vendor-neutral

19861984

SPICE

1973

UC Berkeley

~2006 2024

4.0beta

20/23
performance, safety &
design improvements

SIMATIC S7 GRAPH
(PLCs)

1990ies

Graph-Based Signal-Flow Description – Mechanical Sympathy
Intuitive Common Denominator for Education ...

Idea Concept

GNU Radio 4.0 goal:
remove barriers for wider public adoption

● better performance & functionalities
● dependable 24h/7 operation capabilities

Software-Defined-Radio (SDR) trend: flexibility improved by shifting more-and-more functionality from HW → compile-time SW → runtime SW

Design + Simulate

validate/
improve Prototype

HW/SW Design

keep concept
redesign SW

Industrial/Operational

Deployment

Why we invest into GNU Radio 4.0beta

Implementing Lean-, Clean- and Secure Coding Practices

… should be self-evident

Challenges and Risks:
● Total Cost of Ownership:

– large, non-secure codebases increase costs and risks.
– challenges with flexibility, onboarding, and adapting to changes.

● Meeting Security and Compliance Requirements:
– technical debt, negligence, and non-compliance leads to increased attack

surfaces, performance loss, missing requirements, and public funding
↔ regulatory compliance with W.H./EU/national Cybersecurity Acts… is key!

Mitigation Strategies & Opportunities:
1. continuous improvement & keeping it ‘lean’ and ‘clean’:

collectively refine code to minimise and address new vulnerabilities.

2. improve the ‘bus factor’ through extending usability, sharing maintenance
across a wider community, public organisation and industry

3. promote GNU Radio as a Free and Open Industry Standard → LGPLv3

… but often isn’t.

https://spectrum.ieee.org/lean-software-development

… for GR to be used in critical/public infrastructure or any real-world applications,
it must meet higher standards for safety, cybersecurity, and product liability.

https://spectrum.ieee.org/lean-software-development

Josh
Mormon

Derek Kozel
In mid-2002 … gr-digitizer

● … GNU Radio 3.7 @ GSI/FAIR – Why? How?
– Instantiating GR flow-graphs using C++-only?
– Moving event-based processing RxCpp → GR3.X?

● <discussion on buffer limitations, ...>

● <… more discussions, inserting each other’s expertises)…>

● Proposal to address the core GR3.X ‘pain-points’ together:
A) buffer- and compute-related performance improvements (SIMD)

B) making asynchronous event-based signal processing a first-class citizen of GR (↔ packet-radios)

C) enabling user-customisable schedulers that can be optimised
for e.g. throughput, latency, hardware resources, ...)

D) easier integration of vendor-neutral heterogeneous, distributed and embedded computing, and

E) helping making GNU Radio safer, leaner, cleaner, and easier to use
for core- and out-of-tree developers using modern C++ standards.
→ focus on: industrial 24h/7 deployment, safety, cybersecurity, long-term maintainability, compliance, ...

GNU Radio 4.0 Modernisation Goals
simplify onboarding for new contributors to participate/contribute more effectively

industry

government

science

academia

Community
&

Adoption

Reliance on
‘true’ industry

standards

Technical
Relevance

&
 Functional

Performance

Reduce
Cognitive

Complexity

Reduce
Learning

Curve

while promoting …

Outline: addressing the core GR3.X ‘pain-points’ together

A) buffer- and compute-related performance improvements (SIMD)
B) making asynchronous event-based signal processing a first-class

citizen of GR (↔ packet-radios)

C) enabling user-customisable schedulers that can be optimised
for e.g. throughput, latency, hardware resources, ...)

D) easier integration of vendor-neutral heterogeneous,
distributed and embedded computing, and

E) helping making GNU Radio safer, leaner, cleaner, and easier to use
for core- and out-of-tree developers using modern C++ standards.
→ focus on: industrial 24h/7 deployment, safety, cybersecurity, long-term maintainability, compliance, ...

GNU Radio 4: clean- and lean C++ code-base redesign
favours ‘composition’ over ‘inheritance’

modular library:
● performance & functionality focused!
● C++’s only-pay-for-what-you-use paradigm
● free to extend, modify, synthesis new ideas
● compatible with public infrastructure,

safety, security, and industrial use.

traditional (prescriptive) frameworks:
● user implements stubs
● limited options to exchange or to extend

Anatomy of a GR4 Block
sharpened interfaces & stream-lined compositional implementation

m
sg

snk

msgOutmsgIn

Block<T>
● sample_rate

● …
(opt) MsgPort[In,Out]
● asynchronous
● map-type information only

i.e. {{“key1”, value1}, {“key2”, value2}, … }
● can be used to update settings

(e.g. via RPC/UI)
● ↔ GR’3 aka. ‘control port’

Block<T>
● pure or stateful signal/data

processing function
● settings expressed as

● class members, and/or
● map-type information

I.e.{{“key1”, value1}, {“key2”, value2}, … }

● ensures constraints
● input-to-output sample ratio
● tag forwarding

(opt) Streaming Input PortIn<T>
● always synchronous, with type T:

● fundamental (integers, floats)
● structured data (structs, classes)

● may have ‘Tag’s
● map-type information

● trigger,
● new settings changes
● ...

(opt) Streaming PortOut<T>
● mirrors PortIn<T>
● not necessarily 1:1 sample ration

● decimation, interpolation, …
● also dynamic ratio, including

● do not consume input
● do not produce output
● produce output w/o input

Tag

Modern and much Simpler C++ User-API
Code is single Source of Truth – easier to reason & maintain

 1
 2
 3 struct BasicMultiplier : public Block<BasicMultiplier> {
 4 InPort<float> in;
 5 OutPort<float> out;
 6 float scaling_factor = static_cast<float>(1); // comment
 7
 8
 9
10 constexpr float processOne(const float &a) const noexcept {
11 return a * scaling_factor;
12 }
13 };
14
15 ENABLE_REFLECTION_FOR(BasicMultiplier, in, out, scaling_factor);Key Take-Aways:
● Simplified Block Development: stand-alone creation is more intuitive. Feedback? Let's discuss!
● Efficient Functional Unit Testing: directly test blocks without embedding in flow-graphs

● offer three basic (optional) API variants: sample-by-sample, chunked, or arbitrary processing (i.e. ‘work(…)’) function
● Compiler-Optimised Interface: Type-strictness and constraints help w.r.t. efficient compiler optimisations
● Early Error Detection: most issues caught during compile time, reducing errors and debugging during run-time

20

Modern and much Simpler C++ User-API
Intrinsic SIMD support using processOne(…) API

 1 template<typename T>
 2 requires (std::is_arithmetic<T>())
 3 struct BasicMultiplier : public Block<BasicMultiplier<T>> {
 4 InPort<float> in;
 5 OutPort<float> out;
 6 float scaling_factor = static_cast<float>(1); // comment
 7
 8
 9 template<t_or_simd<T> V> // → intrinsic SIMD support
10 constexpr V processOne(const V &a) const noexcept {
11 return a * scaling_factor;
12 }
13 };
14
15 ENABLE_REFLECTION_FOR_TEMPLATE(BasicMultiplier, in, out, scaling_factor);

20

Key Take-Aways:
● Simplified Block Development: stand-alone creation is more intuitive. Feedback? Let's discuss!
● Efficient Functional Unit Testing: directly test blocks without embedding in flow-graphs

● offer three basic (optional) API variants: sample-by-sample, chunked, or arbitrary processing (i.e. ‘work(…)’) function
● Compiler-Optimised Interface: Type-strictness and constraints help w.r.t. efficient compiler optimisations
● Early Error Detection: most issues caught during compile time, reducing errors and debugging during run-time

 1 template<typename T>
 2 requires (std::is_arithmetic<T>())
 3 struct BasicMultiplier : public Block<BasicMultiplier<T>> {
 4 InPort<float> in;
 5 OutPort<float> out;
 6 float scaling_factor = static_cast<float>(1); // comment
 7
 8
 9 // complementary interface, e.g. for first-class resampling
10 gr::work::Status processBulk(std::span<const T> in, std::span<T> out) {
11 std::ranges::transform(in, out.begin(), [sf = scaling_factor](const T& val) {
12 return val * sf;
13 });
14 return gr::work::Status::OK;
15 }
16 };
17
18 ENABLE_REFLECTION_FOR_TEMPLATE_FULL((typename T),
(BasicMultiplier<T>),in,out,scaling_factor,context);
19 //alt: ENABLE_REFLECTION_FOR_TEMPLATE(BasicMultiplier,in ,out , scaling_factor, context);

Fun Fact (aka. beware of ‘premature optimisations’):
Benchmarking proved that using ‘processOne(…)’ is numerically more performant than ‘processBulk(…)’

rationale: locality, reduced scope that can be better exploited by the compiler and L1/L2/L3 CPU cache.

Modern and much Simpler C++ User-API
Complementary processBulk(…) API I/II

20

 1 template<typename T>
 2 requires (std::is_arithmetic<T>())
 3 struct BasicMultiplier : public Block<BasicMultiplier<T>, Resampling</*N_IN, M_OUT*/>>> {
 4 InPort<float> in;
 5 OutPort<float> out;
 6 float scaling_factor = static_cast<float>(1); // comment
 7
 8
 9 // complementary interface, e.g. for first-class (arbitrary) resampling
10 gr::work::Status processBulk(ConsumableSpan auto& in, PublishableSpan auto& out) const noexcept {
11 // [..] user-defined processing logic [..]
12 in.consume(3UL); // consume N_IN = 3 samples
13 out.publish(2UL); // publish M_OUT = 2 samples → effectively a 3:2 re-sampler
14 return gr::work::Status::OK;
15 }
16 };
17
18 ENABLE_REFLECTION_FOR_TEMPLATE(BasicMultiplier, in, out, scaling_factor, context);

Modern and much Simpler C++ User-API
Complementary processBulk(…) API I/II

20

Fun Fact (aka. beware of ‘premature optimisations’):
Benchmarking proved that using ‘processOne(…)’ is numerically more performant than ‘processBulk(…)’

rationale: locality, reduced scope that can be better exploited by the compiler and L1/L2/L3 CPU cache.

Modern and much Simpler C++ User-API
runtime polymorphism: built-in GRC/YAML-style flow-graph support → enables UI/UX, Python, …

 1 # GRC/YAML-style graph definition
 2 blocks:
 3 - name: main_source
 4 id: good::fixed_source
 5 parameters:
 6 event_count: 100
 7 unknown_property: 42
 8 - name: multiplier
 9 id: good::multiply
10 - name: counter
11 id: builtin_counter
12 - name: sink
13 id: good::cout_sink
14 parameters:
15 total_count: 100
16 unknown_property: 42
17 connections:
18 - [main_source, 0, multiplier, 0]
19 - [multiplier, 0, counter, 0]
20 - [counter, 0, sink, 0]

 1 using namespace gr;
 2
 3 try {
 4 // load plugin library (stored as .so)
 5 std::vector<std::filesystem::path> paths = /*...*/;
 6 gr::PluginLoader plugins(gr::globalBlockRegistry(),
 7 std::move(paths))
 8
 9 // load/save GRC-style graph descriptions
10 std::string grcGraph = /* … grc-style yaml file */
11 gr::Graph graph = gr::loadGrc(plugins, grcGraph);
12 std::string savedGrcData = gr::saveGrc(graph);
13
14 gr::scheduler::Simple scheduler(std::move(graph));
15 expect(scheduler.runAndWait().has_value());
16 } catch (const gr::exception& e) {
17 fmt::println(std::cerr, "unexpected exception: {}", e);
18 // handle grc load/save error
19 }

→ UI/UX & Python-Bindings need community driven-integration

Modern and much Simpler C++ User-API
C++(Python)-Block PoC Prototype

import time;
counter = 0

def process_bulk(ins, outs):
 global counter

 # Print current settings
 settings = this_block.getSettings()
 print("Current settings:", settings)

 # tag handling
 if this_block.tagAvailable():
 tag = this_block.getTag()
 print('Tag:', tag)

 counter += 1
 # process the input->output samples
 for i in range(len(ins)):
 outs[i][:] = ins[i] * 2

 # Update settings with the counter
 settings["counter"] = str(counter)
 this_block.setSettings(settings)

 1 using namespace gr;
 2
 3 Graph graph;
 4 auto& src = graph.emplaceBlock<TagSource<float>>(...);
 5 auto& block = graph.emplaceBlock<PythonBlock<float>>({
 6 { "n_inputs", 1U},
 7 {"n_outputs", 1U},
 8 { "pythonScript", pythonScript}});
 9 auto& sink = graph.emplaceBlock<TagSink<float>(...);
10
11 graph.connect(src, "out"s, block, "inputs#0"s);
12 graph.connect(block, "outputs#0"s, sink, "in"s);
13
14 scheduler::Simple sched{std::move(graph)};
15
16 try {
17 expect(scheduler.runAndWait().has_value());
18 } catch (const gr::exception& e) {
19 // handle grc load/save error
20 }

→not feature-complete, but could be expanded upon by community

vs.
this PoC eg. GRC-like

Modern and much Simpler C++ User-API
C++ compile-time reflection: Code is single Source of Truth
… can be used to generate Python bindings, code & UI documentation, provide UI meta
information, further static reflection options, etc.

 1 template<typename T>
 2 requires (std::is_arithmetic<T>())
 3 struct TestBlock : public Block<TestBlock<T>, BlockingIO<true> {
 4 using Description = Doc<R""(
 5 some test doc documentation -- may use mark down, references etc. -- and can be
 6 read-out programmatically
 7 // optional future extension:
 8 // use existing input/output port information and constraints for additional documentation)"">>;
 9 InPort<T> in;
10 OutPort<T> out;
11 A<T, "scaling factor", Visible, Doc<"y = a * x">, Unit<"As">> scaling_factor = static_cast<T>(1);
12 A<std::string, "context information", Visible> context;
13 // ...
14 };

Printout example:
fair::graph::setting_test::TestBlock<float>
some test doc documentation -- may use mark down, references etc. -- and can be read-out programmatically
// optional future extension:
// use existing input/output port information and constraints for additional documentation

BlockingIO
i.e. potentially non-deterministic/non-real-time behaviour_

supported data types:0:float 1:double
Parameters:
float scaling_factor - annotated info: scaling factor unit: [As] documentation: y = a * x
std::string context - annotated info: context information unit: [] documentation:
signed int n_samples_max_
float sample_rate_

~~Ports:~~ //[..]

No additional DSL to learn for users!

Tutorials on Indico & YouTube

Jean-Michel Friedt Alexander KrimmDr. Matthias KretzDr. Ivan Čukić Dr. Semën Lebedev

std::simd

@europeangnuradiodays1445@GNURadioProject

Outline: addressing the core GR3.X ‘pain-points’ together

A) buffer- and compute-related performance improvements (SIMD)
B) making asynchronous event-based signal processing a first-class

citizen of GR (↔ packet-radios)

C) enabling user-customisable schedulers that can be optimised
for e.g. throughput, latency, hardware resources, ...)

D) easier integration of vendor-neutral heterogeneous,
distributed and embedded computing, and

E) helping making GNU Radio safer, leaner, cleaner, and easier to use
for core- and out-of-tree developers using modern C++ standards.
→ focus on: industrial 24h/7 deployment, safety, cybersecurity, long-term maintainability, compliance, ...

Graph-Based Signal-Processing – ‘Mechanical Sympathy’

"You don't have to be an engineer to be be a racing driver, but you
do have to have Mechanical Sympathy." Jackie Stewart*

*'Mechanical Sympathy' by Jackie Stewart (aka. the 'Flying Scotsman')

more general: “understand and care for how the machine you are working
on itself works, to be able to get best performance out of the system”

img reference source AMD

https://www.linkedin.com/pulse/tech-concept-day-mechanical-sympathy-ankit-gaur/
https://www.morson.com/how-to-become-a-formula-1-engineer
https://www.amd.com/system/files/2018-03/AMD-Optimizes-EPYC-Memory-With-NUMA.pdf

Latency, Bandwidth & Throughput

Throughput:
the amount of material or
data items passing through

Latency:
delay between
the cause and the effect

Bandwidth:
maximum rate
of data transfer

need lower latency →
a) maximise IO/memory bandwidth or compute efficiency and/or
b) minimise critical data & compute sections

Concurrent & Parallel
Theory

● Concurrent, parallel execution:

latency want this small and deterministic

excellent more in-depth talk by Gil Tene (Azul): "How NOT to Measure Latency", QCon 2012, pdf, video

● Concurrent, non-parallel execution:

https://qconsf.com/sf2012/dl/qcon-sanfran-2012/slides/GilTene_HowNotToMeasureLatency.pdf
https://youtu.be/lJ8ydIuPFeU

excellent more in-depth talk by Gil Tene (Azul): "How NOT to Measure Latency", QCon 2012, pdf, video

Concurrent & Parallel
Real-World Latencies

● Concurrent, non-parallel execution:

● Concurrent, parallel execution:

latency → latency*

context switch
systematic overhead

Examples for (Zen3 architecture):
1) Context Switches

1) Thread: 1 → 10 µs
2) Process: 5 → 20 µs

2) Atomic Operations:
1) L1 cache: 10s of ns
2) L1 to L2 Cache: 10 → 20 ns
3) L1 to L3 Cache: 20 → 50 ns
4) L1 to RAM: 60 → 100+ ns

3) IO/ISR response: 1 → 10 µs
4) USB 3.x: 100 µs → few ms
5) Thread Core Migration: 5 → 20 µs

Classic Paradigm (GR3 et al):
● Pro: maximise/increase actual useful work to diminish negative contributions due to latencies/context switches
● Con: same strategy also increases latencies! :-(

GR4 core goal – minimise these:

https://qconsf.com/sf2012/dl/qcon-sanfran-2012/slides/GilTene_HowNotToMeasureLatency.pdf
https://youtu.be/lJ8ydIuPFeU

Performance through ‘Mechanical Sympathy’
Know your Hardware and your Programming Language

● synchronising across cores invalidates caches → slow reloads
– keep memory/instructions local and small
– avoiding false-sharing and cache evictions
– modern C++: smaller more efficient code (minimise virtual calls)

→ cache evictions are less likely → better performance

further details and discussions:
● 2022-03-09 C++ UG Meeting: https://indico.gsi.de/event/13919/

https://indico.gsi.de/event/13919/

Performance through ‘Mechanical Sympathy’
Type-Strict High-Performance Lock-Free Circular Buffers I/II

● Follows classic reader-writer paradigm
– ‘Buffer’ – conceptually as before, actual backing type-safe memory, RAII, ...

– NEW FEATURE: can safely efficiently propagate both
● unstructured safe data types, same as in GR3:

uint8_t, int16_t, …, float, double, std::complex<[float, double]>

● structured data types (aka. aggregates, structs, classes), e.g. pmtv::map_t,
std::vector<T>, …, Tag, Packet<T>, Tensor<T>, DataSet<T>,…

Tag

LMAX Disruptor inspired: https://lmax-exchange.github.io/disruptor/

further details: 2022-03-09 C++ UG Meeting: https://indico.gsi.de/event/13919/

https://lmax-exchange.github.io/disruptor/
https://indico.gsi.de/event/13919/

Performance through ‘Mechanical Sympathy’
Type-Strict High-Performance Lock-Free Circular Buffers II/II

1 6 11 16 21
4E4

4E5

4E6

4E7

GR4.0 – POSIX GR4.0 – STD

GR3.10 – vmcirc GR3.10 – simple

#reader

[o
p

s/
s]

> 10 x improvement

N.B. test scenario on equal footing
but absolute values could be improved
through better wait/scheduling strategies

main key-ingredients:
● made new CircularBuffer<T> lock-free (using atomic CAS paradigm)
● strict typing & constexpr

→ enables better compiler optimisation and L1/L2/L3 cache locality

SIMD & Merge-API
moving from virtual inheritance → strict typing, CRTP & concepts: https://compiler-explorer.com/z/fe5Khcxfv

Key Take-Aways:
● compiler cannot easily optimise across larger

virtualised code sections (act as barrier)
● Reduces optimisation potential and performance
● new CRTP capable of producing (near) perfect/optimal

code given the right compile-time constraints

https://compiler-explorer.com/z/fe5Khcxfv

SIMD & Merge-API
The best buffer performance is when no buffer is required

sinksource block #1 block #2

Buffer<T>Buffer<T> Buffer<T>

block #1+#2+sink

● processOne(…) (and later processBulk(…)) enable:
– runtime merge:

→ omits Buffer<T> + atomics
– compile-time merge:

→ omits Buffer<T> and facilitate larger scope compiler optimisations (i.e. `-O2` and `-O3`)
→ smaller memory footprint → more efficient use of

● L1/L2/L3 caches
● smaller code sizes → target to be able to run on a micro-processor (e.g. RP2040)

● Facilitates transition from flexible R&D prototype
→ production use that requires less flexibility and more performances

Key Take-Aways:
● SIMD provides another > 4 performance gain (or more depending on architecture)
● constexpr → enables block/graph compile-optimisation pushing performance to CPU hardware limit (& thermal throttling!!)

● side effect: code size can fit < few MBs → GR4 deployment on micro-controller, FPGAs, … (WIP)
● beware of premature optimisations (PMOs)

● e.g. processOne(…) vs. processBulk(…)

SIMD & Merge-API Performance Figures
out-of-the-box ‘Single Instruction, Multiple Data’ (SIMD) acceleration

┌────────────────────────────benchmark:─────────────────────────────┬───cache misses───┬──mean──┬─stddev─┬──max───┬─ops/s─┐
│ merged src→sink │ 1.3k / 3k = 46% │ 626 ns │ 110 ns │ 952 ns │ 16.4G │
│ merged src->copy->sink │ 391 / 971 = 40% │ 957 ns │ 106 ns │ 1 us │ 10.7G │
│ merged src(N=1024)->b1(N≤128)->b2(N=1024)->b3(N=32...128)->sink │ 398 / 960 = 41% │ 957 ns │ 103 ns │ 1 us │ 10.7G │
│ merged src→mult(2.0)→divide(2.0)→add(-1)→sink | 401 / 1k = 40% │ 3 us │ 108 ns │ 4 us │ 3.0G │
│ merged src->(mult(2.0)->div(2.0)->add(-1))^10->sink │ 470 / 1k = 42% │ 41 us │ 189 ns │ 42 us │ 248M │
│ runtime src->sink │ 9k / 174k = 5% │ 42 us │ 98 us │ 336 us │ 241M │
│ runtime src(N=1024)->b1(N≤128)->b2(N=1024)->b3(N=32...128)->sink │ 20k / 648k = 3% │ 125 us │ 328 us │ 1 ms │ 81.7M │
│ runtime src->mult(2.0)->div(2.0)->add(-1)->sink - processOne(..) │ 24k / 663k = 4% │ 105 us │ 259 us │ 882 us │ 97.5M │
│ runtime src->mult(2.0)->div(2.0)->add(-1)->sink - processBulk(..) │ 24k / 664k = 4% │ 152 us │ 358 us │ 1 ms │ 67.3M │
│ runtime src→(mult(2.0)→div(2.0)→add(-1))^10→sink │ 56k / 686k = 8% │ 127 us │ 28 us │ 198 us │ 80.6M │
└───┴──────────────────┴────────┴────────┴────────┴───────┘

CPU: AMD Ryzen 9 5900X (Zen 3)

Outline: addressing the core GR3.X ‘pain-points’ together

A) buffer- and compute-related performance improvements (SIMD)
B) making asynchronous event-based signal processing a first-class

citizen of GR (↔ packet-radios)

C) enabling user-customisable schedulers that can be optimised
for e.g. throughput, latency, hardware resources, ...)

D) easier integration of vendor-neutral heterogeneous,
distributed and embedded computing, and

E) helping making GNU Radio safer, leaner, cleaner, and easier to use
for core- and out-of-tree developers using modern C++ standards.
→ focus on: industrial 24h/7 deployment, safety, cybersecurity, long-term maintainability, compliance, ...

Complex Data Types and Event-Style/Packet Processing
synchronous packet/event processing (HEP inspired) – new: Packet<T>,Tensor<T>, DataSet<T>

m
sg src snksnkFFT

transient detector

m
sg

snk DataSet<T>meta-information (t0,fs, axis information,
signal names/units, <ctx>, …)

ctx1 ctx2

CTX [A,B]
- matcher/filter

 <ctx>
snksnk

meta-information
(t0,fs, <ctx>, …)

x N
ctx1,fs,… ctx2

notify buffer
snksnk

 <ctx>

client
subscription-filter

filter
modes:

transient

ctx1 ctx2
transient

DataSet
-ctx1

DataSet
-ctx2

‘multiplexed’

ctx1 ctx2
transient

DataSet
-ctx1

‘multiplexed’
on ctx1-only

ctx1 ctx2
transient

DataSet
transient-

ctx1

-Δtpre→0→Δtpost

‘triggered’

ctx1 ctx2
transient

DataSet
non-multiplexed/

continuous

‘continuous’

Tag+std::vector<T>
or new Packet<T>

↔ N.B. old PDU concept

Key Take-Aways: Flow-Graphs
● can now be used to process structured event-type data

(packets, DataSet<T>s, “HEP” events, …)
● support for feedback loops
● context-dependent processing/settings handling

Future Vision/Extension: Inspiration from the Gaming Industry
Basic Scripting of more complex signal flow/processing mechanisms

e.g. https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-control.html

https://docs.unity3d.com/Packages/com.unity.visualscripting@1.8/manual/vs-control.html

Timing Synchronisation Across Multiple Nodes
aka. ‘The Two Clock Problem’

● MIMO signals – if possible – are usually synchronised via each RX channel being on the same DAQ system
● not always possible: limited #channel per device (↔costs), largely spacially distributed DAQs (e.g. FAIR: 4.5 km)
● real-world problem: (re-)synchronise physically/spacially distributed sources within the same flow-graph

– failure cases to consider: ‘reconnecting/restarting SDRs/nodes’, ‘no data’ & time-outs, … clock-drifts, transmission delays , ...

nano-sec. timing

m
sg

Digitizer|SDR
|Node #1

m
sg

Digitizer|SDR
|Node #2

m
sg

White-Rabbit|GPS|UDP
Timing Receiver
optional: Node #0

Sync-Block
regular GR

block(s)

DAQ
start

0

0

cases:

A.I
A.II
A.III

B.0

B.I

B.II

B.III
hardware trigger

tags

CircularBuffer<T>

CircularBuffer<T>

solved through standardised ‘Tag’s;
TRIGGER_NAME, TRIGGER_TIME, TRIGGER_OFFSET

software
trigger

e.g

Outline: addressing the core GR3.X ‘pain-points’ together

A) buffer- and compute-related performance improvements (SIMD)
B) making asynchronous event-based signal processing a first-class

citizen of GR (↔ packet-radios)

C) enabling user-customisable schedulers that can be optimised
for e.g. throughput, latency, hardware resources, ...)

D) easier integration of vendor-neutral heterogeneous,
distributed and embedded computing, and

E) helping making GNU Radio safer, leaner, cleaner, and easier to use
for core- and out-of-tree developers using modern C++ standards.
→ focus on: industrial 24h/7 deployment, safety, cybersecurity, long-term maintainability, compliance, ...

GR3 Scheduler Architecture
key rationale: ‘micro-service’-style limitations in GR3 vs. ‘Mechanical Sympathy’

Two limiting factors in GR3 design (main ‘pain points’ and reason why GR4 development was started):
A) blocks are also `std::thread`s and their processing function managed by the systems scheduler (Linux: O(1)→ CFS)

→ blocks compete with each other and system tasks (starvation, non-determinism, non-embedded/u-processor friendly)
● notably: many more threads created than there are available computing resources/cores

B) max/min buffer data intake is not globally controlled by default
→ creates undesired latencies, larger memory footprint than necessary

CPU

executing

CPU

executing

CPU

executing

CPU

executing

CPU

executing

Execution:

Example (simplified):

Src 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 S 2

1 N.B. block #1 invoked on consume
(could produce more data)

3 S 2 3 S 2 3 S 2 3 S 2 3 S 2 3 S 2 3 S

Wouldn’t this be nicer (ignoring other optimisation, e.g. Merge-API):

Src 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 S throughput optimised (18 cycles)

latency: 19 cycles

Src 1 1 1 1 1 1 1 1 2 3 S 3 S 3 S 3 S 3 S 3 S 3 S 3 S

Latency optimised: 11 cycles

GR3 Scheduler Architecture
‘micro-service’-style limitations in GR3 → not a new but long-standing problem

Matt Ettus & Derek Kozel https://youtu.be/jq0RewceCwc

GR3 Scheduler Architecture
‘micro-service’-style limitations in GR3 → not a new but long-standing problem

● one viable workaround:
https://github.com/dkozel/gr-latency_manager

throttle input based on received output

https://github.com/dkozel/gr-latency_manager

Graph-Based Signal-Flow Description
GR3.x→4: multiple compute domains & inverted scheduler paradigm Block → Graph

sink #7
<CPU>

source #1
<CPU>

sink #3
<CPU>

block #4
<GPU>

sink #N
<GPU>

block #6
<GPU>

sub-flow-graph: e.g. CPU scheduling domain

sub-flow-graph: e.g. GPU scheduling domain

block #2
<CPU>

sink #8
<CPU>

block #5
<CPU>

edge<T>

Buffer<T>Block Port<T>
Port<T>

flow-graph (global scheduler)

CPU

GPU

sink#3:work() → block#2 → block#5 → ...

block#4:work() → block#6 → ...

flow-graph scheduler

scheduler#2

 <CPU→
GPU>

<G

PU→
CPU>

μ-controller,
AI-accelerator, TPUs

● simplified core API providing flow-graph topology, block & work constraints, ...
– e.g. `work(requestedWork)’ → `process[One,Bulk](...)’ function → controls latency

● enables users to write their own custom schedulers that
– optimise for their specific application: latency vs. throughput vs. execution order vs. …
– assign and distribute block work functions across available compute resources (CPU|GPU|...)
– choose your own high-level scheduler implementation specific design choices:

● static scheduling (merge-API), round-robin vs. prioritised scheduling, dependent/pre-requisite flow-graphs first
● CPU shielding/thread affinity, real-time vs. non-real-time sub-flow-graphs, …
● data chunk-size based, ‘single global queue’ vs. ‘per-core queues & work stealing`, …

User-pluggable Work Scheduler API Paradigm

push
pop

head/top tail

push
pop

push
pop

push
pop

work “stealing”
either: assign
or: takerun-time/user

global shared queue

resource specific queue

submit()
invoke()
execute()

return periodic tasks

https://en.wikipedia.org/wiki/Scheduling_(computing)

User-pluggable Work Scheduler API Paradigm
Example: Topologies specific designed to trip-up schedulers 😈😇

exercise:
what is the correct, best, and most efficient execution order?

0. Busy-Looping → “Simple” naive implementation

1. Depth-first

2. Breadth first

Other possible Algorithms:
https://github.com/gnuradio/gnuradio4/blob/main/include/README.md

● Topological Sort
● Critical Path Method (CPM) → minimizes total completion time
● A* → shortest path
● Wu Algorithm → minimal execution time
● Johnson’s Algorithm → CPM on multiple processor cores
● Program Evaluation and Review Technique (PERT)
● Belman-Ford Algorithm
● Dijkstra's Algorithm → shortest path
● A* → shortest path
● … combinations of the above and many more

Next Step: GNU Radio competition to find the best
‘default’, ‘real-time’, ‘throughput’ optimising scheduler
for given benchmark topologies.

User-pluggable Work Scheduler Architecture
Implemented initially only the most basic scheduler strategies to test and verify new API

https://github.com/gnuradio/gnuradio4/blob/main/include/README.md

Outline: addressing the core GR3.X ‘pain-points’ together

A) buffer- and compute-related performance improvements (SIMD)
B) making asynchronous event-based signal processing a first-class

citizen of GR (↔ packet-radios)

C) enabling user-customisable schedulers that can be optimised
for e.g. throughput, latency, hardware resources, ...)

D) easier integration of vendor-neutral heterogeneous,
distributed and embedded computing, and

E) helping making GNU Radio safer, leaner, cleaner, and easier to use
for core- and out-of-tree developers using modern C++ standards.
→ focus on: industrial 24h/7 deployment, safety, cybersecurity, long-term maintainability, compliance, ...

Next Steps:
Pushing GNU Radio 4.0beta towards wider production use

● Community Engagement
– Foster Community, Increase Visibility, Educate & Document

● Core Library & User Experience
– Complete Core-Lib Blocks.
– Default official GRC-style UI Integration.

● Performance & Long-Term Vision
– Optimise Compile-Time Performance (WIP)
– Expand Utility, UX, & HW Integrations:

GPUs, FPGAs, micro-controller, AI-accelerators & -TPUs
– Expand Core Team: increase the ‘bus factor’
– Sustainable Growth.

– Safety & Security Hardening: meet regulatory standards
→ critical for industry and public infrastructure adoption→ looking for partners

Open Questions:

● What would it take for your organisation, institute, or company
to publicly adopt GR4.0?

● Is the present license still too restrictive for GR
to be used in public organisations & industry?

Thank you!

Looking forward to a technical dialogue and
building and strengthening cross-disciplinary partnerships …

Stay in touch with us!

Instagram:
@universeinthelab

Facebook:
@GSIHelmholtzzentrum
@FAIRAccelerator

Mastodon:
@FAIR_GSI_de
@helmholtz.social

LinkedIn:
GSI Helmholtz Centre
for Heavy Ion Research

YouTube:
FAIR/GSI –
The Universe in the Lab

Appendix

Modern and much Simpler C++ User-API
Transactional and Multiplexed Settings Interface

beam production chain

● (optionally) multiplexed block settings changes via special context ‘ctx’ Tag
→ facilitate flexible multi-mission/multi-user operations

Large industrial setting: SDR HW device are often not exclusively used by one user or analysis
A) w/o feedback → operate multiple parallel signal-processing pipelines
B) w/ feedback → reconfigure HW/algorithms on-the-fly (e.g. adaptive gain scheduling)

 1 template<typename T>
 2 requires (std::is_arithmetic<T>())
 3 struct BasicMultiplier : public Block<BasicMultiplier<T>> {
 4 InPort<float> in;
 5 OutPort<float> out;
 6 float scaling_factor = static_cast<float>(1);
 7 std::string ctx; // ↔ multiplexing settings context (optional info)
 8
 9 template<t_or_simd<T> V>
10 constexpr V processOne(const V &a) const noexcept {
11 return a * scaling_factor;
12 }
13 };
14 ENABLE_REFLECTION_FOR_TEMPLATE(BasicMultiplier, in, out, scaling_factor, ctx);

Modern and much Simpler C++ User-API
Transactional and Multiplexed Settings Interface

Essentially three settings APIs:
A) default: via pmt-messages and msgIn ↔ msgOut port cascades (scheduler ↔ graph ↔ block)
B) via Tag: propagation of e.g. sample_rate to down-stream blocks
C) via Block (primarily unit-tests): block.setting.set({“scaling_factor”, T(42)});

(via John Sallay’s pmt library)

Generic OpenDigitizer Scope – since 2017 (ACO+SYS)
19” Hardware Integration & Deployment

● i.e. system w/o pre-existing solution (e.g. those provided by BEA)
● presently deployed ~200 systems (mostly SIS18)

→ ~300+ systems @FAIR
(many different internal and external groups involved)

Device type #Systems

Magnet power converters ~180

RF systems
(Master DDS, cavities)

~70

Fast pulsed devices
(Kickers, choppers, mag. horn)

~40

Beam exciters
(KO, TFS, BTF, stoch. cooling)

~15

Beam signals
(Schottky, FCT/RF, phase probes)

~10

HV devices
(Septa, e-cooler HV)

~25

Miscellaneous
(Pulse power, MPS, Testing)

~10

#Systems Total ~350

#Digitizers Total ~300

https://www.playitstartup.com/

Metric: Bus Factor & Reusability
taken from the OSWG/C++-UG software guideline discussions @GSI/FAIR

… “number of team members that have to disappear
from a project before the project stalls due to lack of
knowledgeable or competent personnel", Wikipedia

Goal: bus factor ≥ 3
(for L2, L3 applications)

GitHub Tooling Example:

GitHub Tooling Example (by JetBrains):

https://www.playitstartup.com/
https://en.wikipedia.org/wiki/Bus_factor

Generic OpenDigitizer Facility Monitoring – Early Fixed Displays
https://fair-acc.github.io/opendigitizer/

https://fair-acc.github.io/opendigitizer/

GNU Radio Timeline

20001961

BLODI
(BLockDIagram)

&
vendor-neutral

19861984

SPICE

1973

UC
Berkeley

~2006 2024

4.0beta

20/23
performance, safety &
design improvements

SIMATIC S7 GRAPH
(PLCs)

1990ies

Why we invest into GNU Radio 4.0beta
Mechanical Sympathy & Graph-Based Signal-Flow Description

if
(check())
{
 ...
}

ad-hoc prototypes
design studies

maintenance

operational 24/7 use

dynamic operational challenges
security & safety

performance
commissioning

knowledge transfer
(potentially lossy)

implement
prototypes

transfer

implement
services

inspect/adapt

UI/

simplifies onboarding for new partners and users to participate & contribute more effectively

GSI/FAIR PSP 2.14.17 Project - FAQ
Overview of SYS-contributed FLOSS

● OpenCMW http://opencmw.io/

… a lightweight, extendable, open-source middleware abstraction for C++/Java
… flexibility through unifying diverse transport and serialiser protocols (JSON, YAML, HTML, binary, rda3-data)
… core development finished in 2021 – RBAC integration pending (target: by 2025)

● GNU Radio (GR) https://www.gnuradio.org/, https://github.com/gnuradio/gnuradio4

… an open-source ecosystem for signal processing, widely adopted across gov-funded laboratories, industry, and
academia.

… minimises GSI/FAIR's resource commitment and maintenance burden (‘bus factor’)
… enhances capabilities by leveraging external developments, used since 2017 now transitioning to GR 4.0.

● OpenDigitizer https://github.com/fair-acc/opendigitizer

… reconfigurable full-stack framework for aggregating and processing data from diverse accelerator and
experiment devices.

… SDR: end-user adaptable to fulfil different roles with the same/different HW/SW (i.e. ‘multi-mission’ operation)
… builds upon OpenCMW & GNU Radio, allowing graphical, C++, or Python implementations.
… “take and learn from the best”: incorporates features from UCAP, OASIS, DIP, Fixed-Displays (via WASM), ...

● ChartFX https://github.com/fair-acc/chart-fx
… scientific charting library, key in identifying bottlenecks and functionalities missing from current control systems.
… used in most diagnostics control room applications; a precursor to OpenCMW development.

● Why these “new” Developments?
… strong functional need for middle-tier processing capabilities for commissioning and reaching FAIR beam

parameters
… existing incomplete implementation lacked critical core functionalities & performance

http://opencmw.io/
https://www.gnuradio.org/
https://github.com/gnuradio/gnuradio4
https://github.com/fair-acc/opendigitizer
https://github.com/fair-acc/chart-fx

