

gr-harmonia: A Synchronization Toolkit for Softwaredefined Radios in a Distributed Network

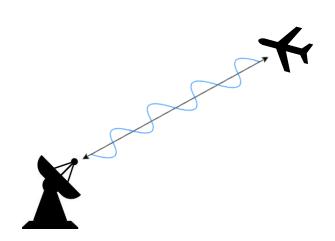
Cody Kieu^{1,2}, Justin Metcalf^{1,2}, and Russell Kenney^{1,2}

¹Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma, USA ²School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA

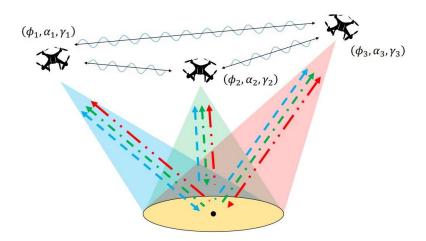
- Introduction
- Synchronization Procedure
- gr-harmonia: Blocks and Features
- Experimental Validation
- Conclusions and Future Work

Introduction

- Motivation
- Signal Model
- Synchronization Procedure
- gr-harmonia: Blocks and Features
- Experimental Results
- Conclusions and Future Work



Introduction



Motivation

Traditional Monostatic Radar

Distributed Radar System

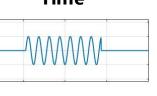
Introduction

Signal Model

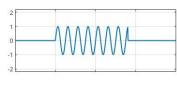
- Clock Drift (α)
- Clock Bias (ϕ)
- Carrier Phase (γ^{tx} , γ^{rx})

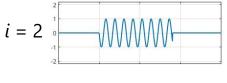
Clock drift definition

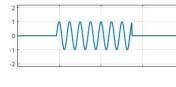
$$\alpha_i = f_i^{\text{MO}} / f^{\text{MO}}$$

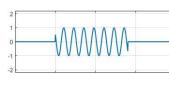

Local time on platform i

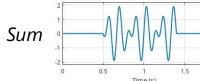
$$\tau_i = \alpha_i t + \phi_i$$

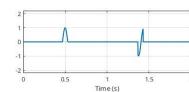


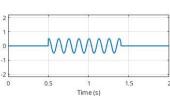












Received signal can be expressed in terms of the receiver's local clock

$$r_{i,j}(\tau_i) = s_j \left(\frac{\alpha_j}{\alpha_i} \tau_i - \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} - 1 \right) \tau_i \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(j \gamma_{i,j}^{\text{err}} \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right) \exp\left(-j 2\pi f^c \left(\frac{\alpha_j}{\alpha_i} \phi_i - \phi_j + \alpha_j \frac{R_{i,j}}{c} \right) \right)$$

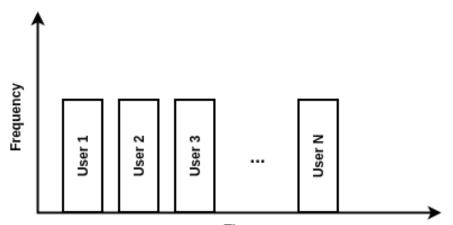
Baseband Signal

Residual Carrier Frequency Error

Residual Clock Bias and **Propagation Delay Phase**

Carrier Phase Frror

- Introduction
- Synchronization Procedure
 - Assumptions and Time-Division Multiple Access
 - Clock Drift Estimation and Compensation
 - Clock Bias and Carrier Phase Estimation and Compensation
- gr-harmonia: Blocks and Features
- Experimental Validation
- Conclusions and Future Work

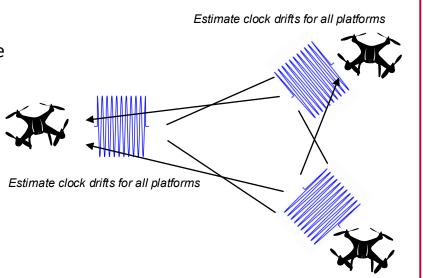


Assumptions

- Each distributed radar platform i has an independent main oscillator with a nominal frequency f^{MO} and a true frequency f^{MO}_i
- Each platform is stationary
- Coarse synchronization performed beforehand

Time-Division Multiple Access

$$\tau_i^{\text{tx}} = (j-1)\Delta_{\text{TDMA}}, \quad j = 1, 2, \dots, N$$

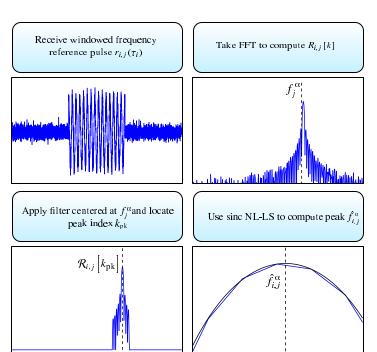


Clock Drift Estimation

- 1. Single-Tone Pulse Broadcasts
 - a) Each platform **broadcasts** specific frequency pulse
 - b) RX platforms **estimate** frequency from each TX
 - c) Each platform **shares** estimated frequency
 - d) Each platform **solves** equations for clock drifts
 - e) Each platform **compensates** drift on TX and RX

Estimate clock drifts for all platforms

Clock Drift Estimation


- Estimate frequency peak using sinc NL-LS [2]
 - Yields an estimate $\hat{f}_{i,j}^{\alpha}$
- All platforms exchange frequency estimates
- Estimates nominally related to clock drifts by

$$\hat{f}_{i,j}^{\alpha} = \left(\frac{\alpha_j}{\alpha_i} - 1\right) f^c + \frac{\alpha_j}{\alpha_i} f_j^{\alpha}$$

Rearrange to give

$$\left(\hat{f}_{i,j}^{\alpha} + f^{c}\right)\alpha_{i} - \left(f_{j}^{\alpha} + f^{c}\right)\alpha_{j} = 0$$

- Relative drifts set one drift to unity (e.g., $\alpha_1 = 1$)
- Each platform uses linear LS to solve above equations for drift estimates $\hat{\alpha}_i$

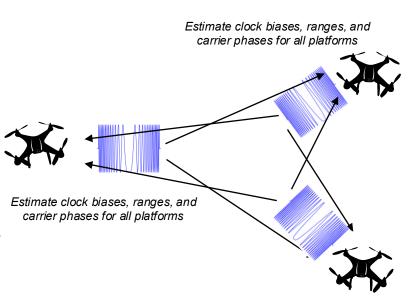
Clock Drift Compensation

• On transmit: recompute baseband signal w/ new time axis and apply carrier correction

$$s'_{j}(\tau_{j}) = s_{j}\left(\frac{\tau_{j}}{\hat{\alpha}_{j}}\right) \exp\left(j 2\pi f^{c}\left(\frac{1}{\hat{\alpha}_{j}} - 1\right)\tau_{j}\right)$$

• On receive: scale RX signal w/ new time axis $\tau_i' = \tau_i/\hat{\alpha}_i$ and apply carrier correction

$$r_{i,j}^b(\tau_i') = r_{i,j}(\tau_i') \exp\left(j 2\pi f^c \left(\hat{\alpha}_i - 1\right) \tau_i'\right)$$


$$= s_{j} \left(\tau_{i}' - \left(\frac{1}{\hat{\alpha}_{i}} \phi_{i} - \frac{1}{\hat{\alpha}_{j}} \phi_{j} + \frac{\alpha_{j}}{\hat{\alpha}_{j}} \frac{R_{i,j}}{c} \right) \right) \exp \left(-j 2\pi f^{c} \left(\frac{1}{\hat{\alpha}_{i}} \phi_{i} - \frac{1}{\hat{\alpha}_{j}} \phi_{j} + \frac{\alpha_{j}}{\hat{\alpha}_{j}} \frac{R_{i,j}}{c} \right) \right) \exp \left(j \gamma_{i,j}^{\text{err}} \right)$$

Clock Bias and Carrier Phase Estimation

- Linear Frequency Modulated (LFM) Pulse Broadcasts
 - a) Each platform **broadcasts** ranging waveform
 - b) Each platform **estimates** time-delay and phase
 - c) Platforms **share** time-delay and phase estimates
 - d) Each platform **solves** for range, clock biases, and carrier phases
 - e) Each platform **compensates** clock bias and carrier phase on TX and RX

Estimate clock biases, ranges, and carrier phases for all platforms

Clock Bias and Carrier Phase Estimation

- Assumes clock drifts now compensated works identically to procedure in [2]
- Pulse-compression waveforms broadcast amongst platforms, and time-delays estimated

$$m_{i,j} = \frac{1}{\hat{\alpha}_i} \phi_i - \frac{1}{\hat{\alpha}_j} \phi_j + \frac{\alpha_j}{\hat{\alpha}_j} \frac{R_{i,j}}{c}$$

- Share time-delay estimates and phase at pulse-compression peak with all other platforms
- Exploit signal symmetry to compute range and bias differences

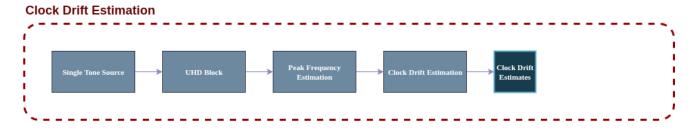
$$\hat{R}_{i,j} = \frac{\alpha_j}{\hat{\alpha}_i} R_{i,j} = \frac{c \left(m_{i,j} + m_{j,i} \right)}{2} \qquad \qquad \hat{\phi}_{i,j} = \frac{1}{\hat{\alpha}_i} \phi_i - \frac{1}{\hat{\alpha}_j} \phi_j = \frac{m_{i,j} - m_{j,i}}{2}$$

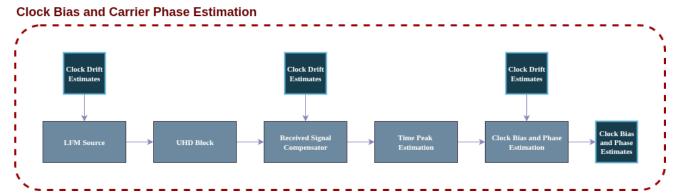
· Compute network average of clock biases and estimates of carrier phase differences

$$\hat{\phi}_i = \frac{1}{N} \sum_j \hat{\phi}_{i,j} \qquad \qquad \hat{\gamma}_{i,j}^{\text{err}} = \angle d_{i,j}(m_{i,j}) + 2\pi f^c \left(\frac{\hat{R}_{i,j}}{c} + \hat{\phi}_{i,j} \right)$$

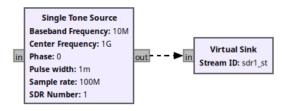
Clock Bias and Carrier Phase Compensation

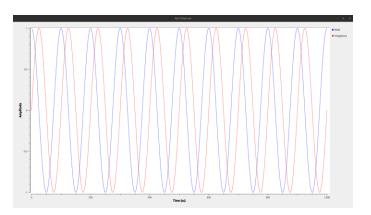
- For all future TX signals at platform *i*:
 - Apply fractional delay of $ilde{\phi}_i$ to correct bias in delay
 - Apply phase correction of $\exp\left(-\mathrm{j}\,2\pi f^c\tilde{\phi}_i\right)$ to correct bias phase
 - Apply phase correction of $\exp(-j \hat{\gamma}_i^{tx})$ to correct carrier phase
- For all future RX signals at platform i:
 - Apply fractional delay of $- ilde{\phi}_i$ to correct bias in delay
 - Apply phase correction of $\exp\left(\mathrm{j}\,2\pi f^c\tilde{\phi}_i\right)$ to correct bias phase
 - Apply phase correction of $\exp(j \hat{\gamma}_i^{rx})$ to correct carrier phase

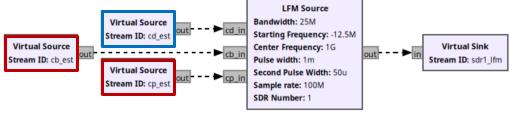


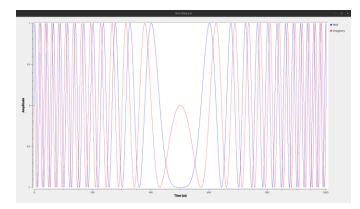

- Introduction
- Synchronization Procedure
- gr-harmonia: Blocks and Features
 - Waveform Generation
 - USRP Interfacing and TDMA
 - Clock Drift Estimation
 - Clock Bias and Carrier Phase Estimation
 - Waveform Compensation
- Experimental Validation
- Conclusions and Future Work

 All blocks operate in the message domain and exchange protocol data units (PDUs) via message ports.

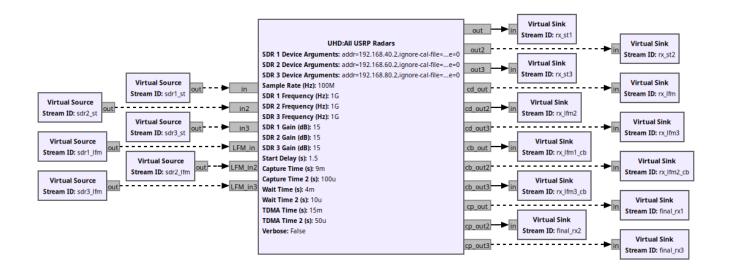






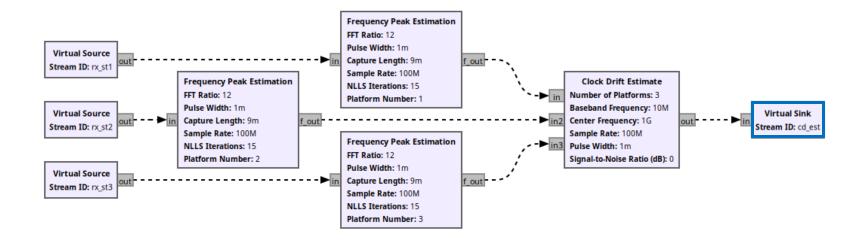

Waveform Generation

• **Single-Tone** and **LFM** Block



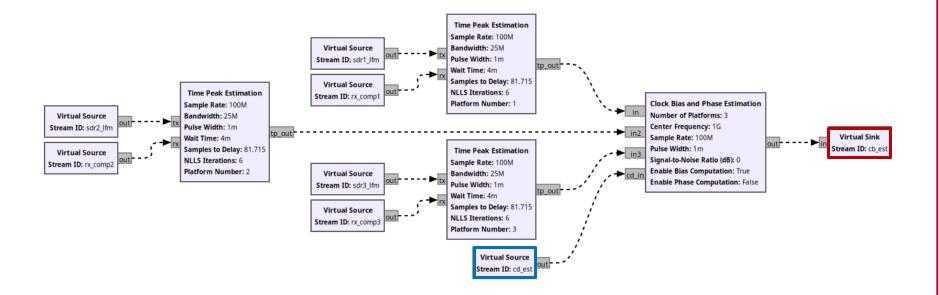
UHD Interfacing and TDMA

• **UHD: ALL USRP** Block



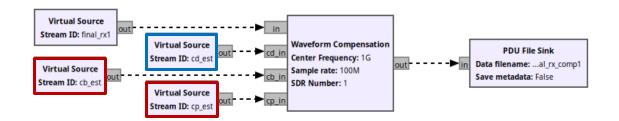
Clock Drift Estimation

Frequency Peak Estimation and Clock Drift Estimation Block



Clock Bias and Carrier Phase Estimation

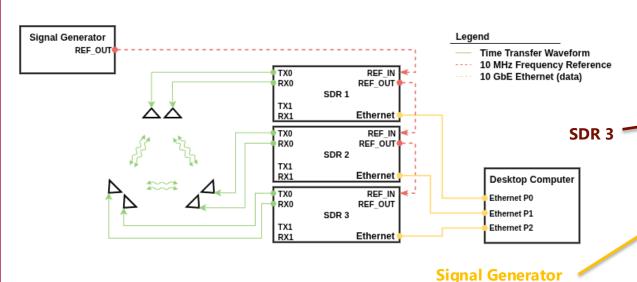
Time Peak Estimation and Clock Bias and Carrier Phase Estimation Block

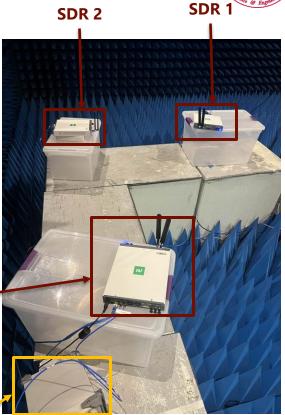


Waveform Compensation

Compensation Block

- Introduction
- Synchronization Procedure
- gr-harmonia: Blocks and Features
- Experimental Validation
 - Configuration
 - Experimental Results
- Conclusions and Future Work



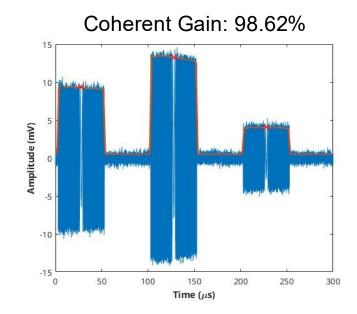

Experimental Validation

Configuration

- Over-the-air experiments
- Ettus X310s with UBX 160 daughterboards
- Monopole antennas

Parameters	Value
Sample rate	100 MS/s
Center frequency	1 GHz
Baseband frequency	10 MHz
Bandwidth	25 MHz
Pulse width	1 ms
Capture length	9 ms

Experimental Validation


Experimental Results

- External 10 MHz reference clock
 - Measure the performance of clock drift

SDR	Standard Deviation		
2	7.17 ppb		
3	6.77 ppb		

- Internal reference clock and external reference clock assuming ideal clock drift estimation
 - Measure the performance of clock bias and carrier phase

Test	$\textbf{Dev 1} \rightarrow \textbf{Dev 2}$	$\textbf{Dev 1} \rightarrow \textbf{Dev 3}$	$\mathbf{Dev}\ 2 \to \mathbf{Dev}\ 3$
Test	Standard Deviation		
Internal Clock	26.18 cm (0.87 ns)	45.73 cm (1.52 ns)	61.57 cm (2.05 ns)
External Clock	3.22 cm (0.10 ns)	3.92 cm (0.13 ns)	4.48 cm (0.15 ns)

- Introduction
- Synchronization Procedure
- gr-harmonia: Blocks and Features
- Experimental Results
- Conclusions and Future Work

Conclusion and Future Work

Conclusion

- Implemented a distributed SDR synchronization module
- Characterized clock drift, clock bias, and carrier phase estimation
- Reduce clock drift to ~7 ppb
- Achieved a maximum of 98.62% gain and reduced clock bias to 3-5 cm with an external 10 MHz reference

Future Work

- Improve documentation of module
- Add UHD block for multiple host implementations
- Incorporate SNR estimation, weighted least squares (WLS) estimation, and Kalman filtering to improve module performance

References

- [1] R. H. Kenney and J. W. McDaniel, "Cooperative Navigation of Mobile Radar Sensors Using Time-of-Arrival Measurements and the Unscented Kalman Filter," in IEEE Transactions on Radar Systems, vol. 1, pp. 435-447, Aug. 2023.
- [2] S. Prager, M. S. Haynes, and M. Moghaddam, "Wireless Subnanosecond RF Synchronization for Distributed Ultrawideband Software-Defined Radar Networks," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 11, pp. 4787–4804, Nov. 2020.
- [3] R. H. Kenney and J. W. McDaniel, "All-Digital Carrier Frequency Synchronization for Distributed Radar Sensor Networks," 2024 IEEE/MTT-S International Microwave Symposium IMS 2024, Washington, DC, USA, Jul. 2024.
- [4] R. H. Kenney, J. G. Metcalf and J. W. McDaniel, "Wireless Distributed Frequency and Phase Synchronization for Mobile Platforms in Cooperative Digital Radar Networks," in IEEE Transactions on Radar Systems, vol. 2, pp. 268-287, Feb. 2024.
- [5] S. R. Mghabghab and J. A. Nanzer, "Open-Loop Distributed Beamforming Using Wireless Frequency Synchronization," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 896–905, Jan. 2021.
- [6] S. R. Mghabghab, S. M. Ellison, and J. A. Nanzer, "Open-Loop Distributed Beamforming Using Wireless Phase and Frequency Synchronization," IEEE Microwave and Wireless Components Letters, vol. 32, no. 3, pp. 234–237, Mar. 2022.
- [7] J. M. Merlo, S. Wagner, J. Lancaster and J. A. Nanzer, "Fully Wireless Coherent Distributed Phased Array System for Networked Radar Applications," in IEEE Microwave and Wireless Technology Letters, vol. 34, no. 6, pp. 837-840, Jun. 2024

References

- [8] J. M. Merlo, N. Shandi, M. Dula, A. Bhattacharyya and J. A. Nanzer, "Fully Wireless Collaborative Beamforming Using A Three-Element Coherent Distributed Phased Array," 2024 IEEE International Symposium on Phased Array Systems and Technology (ARRAY), Boston, MA, USA, pp. 1-8, Oct. 2024.
- [9] Kenney, Russell H., et al. "Concept and Theoretical Performance Analysis for Decentralised Digital Synchronisation in Distributed Radar Sensor Networks." IET Radar, Sonar & Navigation., vol. 19, no. 1, Dec. 2025.
- [10] J. M. Merlo and J. A. Nanzer, "High Accuracy Wireless Time Synchronization for Distributed Antenna Arrays," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, pp. 1966-1967, Jul. 2022.
- [11] Flandermeyer, Shane, Mattingly, Rylee, and Metcalf, Justin. gr-plasma: A new gnu radio-based tool for software-defined radar. Proceedings of the GNU Radio Conference, 7(1), 2022.
- [12] Comberiate, Thomas, Zilevu, Kojo, Hodkin, Jason, and Nanzer, Jeffrey, "Distributed transmit beamforming on mobile platforms using high-accuracy microwave wireless positioning," pp. 98291S, May 2016.