Implementing OFDM Radar & DOA on **Direct RF Platforms** using IIO and GNURadio

David Winter / Yamakaja Systems Development Group

AHEAD OF WHAT'S POSSIBLE™

S GNURADIO THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM

Abstract

In this talk, we will discuss some of the challenges associated with controlling direct RF, or more generally high-speed-transceivers, using the IIO framework: These include computational/uplink bandwidth constraints and RX/TX timing synchronization, and how they can be addressed for bursty systems.

We will then present gr-ofdmradar, a generic OFDM radar and MUSIC/ESPRIT based DOA estimator implementation, and new OOT gr-iio blocks that, in combination with gr-ofdmradar, enable a full OFDM radar system.

Hardware

Hardware

©2021 Analog Devices, Inc. All rights reserved.

Hardware

- Xilinx Zynq UltraScale+ MPSoC
 - 4+2 Core ARM Application+Realtime Cores
 - FPGA
- ► RF: AD9081
 - 4x 16-Bit, 12GSPS DAC
 - 4x 12-Bit, 4GSPS ADC
 - 7.5 GHz Analog Bandwidth
 - 8+8 JESD 204 B/C lanes @ up to 25 Gbps / lane
 => up to 200 Gbps SERDES / direction

Hardware - AD9081

8 // ¹² September 2021 © 2021 Analog Devices, Inc. All rights reserved.

Hardware - Datapath

GRCon

©2021 Analog Devices, Inc. All rights reserved.

10 // 12 September 2021

Hardware - Configuration

- ► Sample rate: 250 MS/s / Channel, 32-bit complex samples
- ► Total: 32 Gbps
- ► Sample memory: Block RAM (2¹⁸ samples RX + 2¹⁸ samples TX)

Hardware - Datapath

GRCon

12 // 12 September 2021

©2021 Analog Devices, Inc. All rights reserved.

Radar and IIO


```
IIO context has 3 attributes:
    ip, ip-addr: 192.168.3.1
IIO context has 4 devices:
    iio:device0: ams <...>
    iio:device1: hmc7044 <...>
    iio:device2: axi-ad9081-rx-hpc (buffer capable)
        17 channels found:
            voltage0 i: (input, index: 0, format: le:S16/16>>0)
            15 channel-specific attributes found:
                attr 0: adc frequency value: 400000000
                <...>
            <...>
        4 device-specific attributes found:
                attr 0: adc clk powerdown value: 0
                attr 1: filter fir config ERROR: Permission denied (-13)
                attr 2: loopback mode value: 0
                attr 3: multichip sync value: 0
        3 buffer-specific attributes found:
                <...>
        9 debug attributes found:
                <...>
        No trigger on this device
    iio:device3: axi-ad9081-tx-hpc (buffer capable)
        24 channels found:
            voltage0 i: (output, index: 0, format: le:S16/16>>0)
            4 channel-specific attributes found:
                <...>
                attr 3: sampling frequency value: 25000000
```


©2021 Analog Devices, Inc. All rights reserved.

12 September

2021

15 //

SGRCon

- IIO Buffers
 - On the target device: Multiple physically contiguous blocks of memory supporting each buffer
 - Only a single memory block will be accessible to userland at a time
 - The other blocks are either waiting to be read, or already empty
 - In both cases, their contents will be overridden as new samples become available
 - If the transport or client can't keep up: Samples may not be contiguous from buffer to buffer!
 - Conclusion: At high sample rates, our OFDM frame must fit into a single buffer

Pulse Radar

Radar

FRIEDT, Jean-Michel; FENG, Weike. Software defined radio based Synthetic Aperture noise and OFDM (Wi-Fi) RADAR mapping. Proceedings of the GNU Radio Conference, [S.l.], v. 5, n. 1, sep. 2020. Available at:
 <<u>https://pubs.gnuradio.org/index.php/grcon/ar</u>

ticle/view/71>. Date accessed: 03 sep. 2021.

- But: RX and TX are provided by two different devices
 - Their buffers are independent
- IIO currently does NOT support operations similar to USRPs timed commands
 - Timestamped buffers are on the TODO list
- What we need:
 - Precise control over when the RX buffer is read from & the TX buffer is played
 - I.e. there should be a *fixed* time offset between every i-th RX and TX sample
 - Repeatable
 - Configurable

GRCon

► Streaming samples over slow[™] link, without hardware changes

RX	Buffer #0		Buffer #1	Buffe	r #2	Buffer #	3			
			ſ		1	ſ				
IX _		Buffer #0		Buffer #1			Buffer	#2	Buffer #3	\rightarrow

©2021 Analog Devices, Inc. All rights reserved.

► Streaming samples over slow[™] link, with timing division duplexing (TDD) hardware

©2021 Analog Devices, Inc. All rights reserved.

12 September

2021

21 //

Sample timing and IIO – Timing Division Duplexing Engine

- A 24 bit counter with a bunch of configurable registers to compare against
- Simplified: Used to gate RX DMA input valid / TX DMA output ready
- Synchronous RX and TX clock domains guarantee cycle-accurate operation
 - Note: This configuration requires symmetrical sample rates

Sample timing and IIO – TDD Engine

GRCon

©2021 Analog Devices, Inc. All rights reserved.

23 // 12 September 2021

Sample timing and IIO – TDD Engine

QT GUI Range Id: t_0 Default Value: 17.95m Start: 0 Stop: 1 Step: 1m	TDD C IIO context U Frame Lengt Burst Count: Terminal Typ	Control JRI: ip:68.3.1 h [ms]: 30 0 e: Master		
Properties: TDD Contro	l			
◀ General	Advanced	Primary Timing	Secondary	Timing
RX DMA On [ms]	0.02			
RX DMA Off [ms]	0.03			
RX RF On [ms]	0			
RX RF Off [ms]	0			
RX VCO On [ms]	0			
RX VCO Off [ms]	0			
TX DMA On [ms]	t_0			
TX DMA Off [ms]	t_0+0.01			
TX RF On [ms]	0			
TX RF Off [ms]	0			
TX VCO On [ms]	0			
TX VCO Off [ms]	0			
		OK	Cancel	Appl

GRCon

©2021 Analog Devices, Inc. All rights reserved.

27 // 12 September 2021

Sample timing and IIO

OFDM Radar

- Less conventional approach processing very similar to that of OFDM
- Operating principle:
 - FDE, transform estimated channel response to time domain
 - Comparing repeated estimates yields doppler information
- Advantages
 - Facilitates the combination of Radar and Communications (Not covered here)
 - Very high processing gain (Low TX power)
 - Nice properties for DSP
- Disadvantages
 - OFDM => High PAPR
 - Comparatively low range / supported delay spread
 - Simultaneous RX & TX, possibly high dynamic range requirement due to TX-RX coupling

OFDM Radar

 Described by Martin Braun in "OFDM Radar Algorithms in Mobile Communication Networks", Karlsruher Institut für Technologie (KIT), 2014
 https://publikationen.bibliothek.kit.edu/1 000038892 Forschungsberichte aus dem Institut für Nachrichtentechnik des Karlsruher Instituts für Technologie

Martin Braun
OFDM Radar Algorithms
in Mobile Communication
Networks

Band 31

gr-ofdmradar

33 // 12 September 2021

GRCon

©2021 Analog Devices, Inc. All rights reserved.

OFDM Radar

Doppler

34 // 12 September 2021

gr-ofdmradar

35 // 12 September 2021

GRCon

print pdu

©2021 Analog Devices, Inc. All rights reserved.

©2021 Analog Devices, Inc. All rights reserved.

https://www.youtube.com/watch?v=gtTILs929aU

39 // 12 September 2021

Direction of Arrival

gr-ofdmradar

Direction of arrival (DoA)

- For a module dedicated to DOA see gr-doa: github.com/EttusResearch/gr-doa
- "GRCon17 gr-doa: GNU Radio Direction Finding - Travis Collins": https://www.youtube.com/watch?v=_UBPVi1v p2s

"GRCon17 - gr-doa: GNU Radio Direction Finding - Travis Collins"

https://www.youtube.com/watch?v=_UBPVi1vp2s

DOA - Flowgraph

©2021 Analog Devices, Inc. All rights reserved.

12 September

45 //

2021

DOA - Simulation

GRCon

Conclusion

gr-ofdmradar

- Hardware agnostic module implementing
 - OFDM Radar
 - DOA
 - MUSIC Pseudo-Spectrum
 - ESPRIT
 - Calibration by pilot
- https://github.com/Yamakaja/gr-ofdmradar

TDD Engine

12 September

2021

49

- Implementing timing critical applications requires hardware support
- The TDD engine provides an easy option to time repetitive operations accurately
- Only transfer interesting data over congested links!

TDD Engine - Pluto

- The TDD engine is already a part of the Pluto, but not exposed
 - The IIO Interface can be enabled by including the driver and a modified device tree
 - May be available in future firmware versions: <u>https://github.com/analogdevicesinc/linux/pull/165</u>
 <u>5</u>
 - Functionality is slightly different, for more information see the Wiki page below
- https://wiki.analog.com/resources/eval/userguides/ad-pzsdr2400tdd-eb/reference_hdl

Outlook

- IIO buffer metadata (Smiliar to VRT)
 - RX/TX Timestamps
 - GPIO Control (Amplifiers, FFH, etc.)
 - Buffer loss detection
- IIO speed improvements
 - Async (network) protocol
 - Zero copy operation
- https://github.com/analogdevicesinc/libiio

- System Deep Dive: <u>https://wiki.analog.com/resources/eval/user-guides/ad9081_fmca_ebz/radar</u>
- ► gf-ofdmradar
 - "OFDM Radar Algorithms in Mobile Communication Networks", Karlsruher Institut für Technologie (KIT), 2014 <u>https://publikationen.bibliothek.kit.edu/1000038892</u>
 - https://github.com/Yamakaja/gr-ofdmradar
 - AD9081 / TDD blocks: <u>https://github.com/Yamakaja/gnuradio/tree/feature/gr-iio-tdd</u>
 - https://github.com/EttusResearch/gr-doa
- AD9081 / ZCU102 Reference Design
 - Product Page: <u>https://www.analog.com/en/products/ad9081.html</u>
 - HDL Reference Design: <u>https://wiki.analog.com/resources/eval/user-guides/ad9081_fmca_ebz/ad9081_fmca_ebz_hdl</u>
 - Linux Driver: <u>https://wiki.analog.com/resources/tools-software/linux-drivers/iio-mxfe/ad9081</u>

Ahhh, technology. We can't find that page.

Thanks Q & A

