

Demonstration of GNU Radio High Data Rate BPSK 10 Mbps Modem

Real-Time with Only Multi-Core General Purpose Processors (GRCON 2021)

David T. Miller

Dave.Todd.Miller@gmail.com

Ashburn, VA 20147 USA

Abstract

This paper presents a GNU Radio Modem

design that demonstrates the feasibility of

achieving ≥10 Mbps Real-Time Binary Phase

Shift Keying (BPSK) performance with a

relatively low cost Personal Computer (PC)

that contains an 8-core General Purpose

Processor (GPP). The high date rate is achieved

with a single GNU Radio flowgraph and

without a Field Programmable Gate Array

(FPGA) or Graphics Processor Unit (GPU).

The high data rate is achieved by breaking the

incoming I/Q sample stream from a

LimeSDR-mini into four “chunk” streams with

each chunk stream going to a separate Symbol

Synchronizer (symbol synchronization) and

Costas Loop (carrier synchronization) chain

with each chain using a separate GPP core. The

GNU Radio modem then “stitches” the original

transmitted single stream back together by

using the frame ASMs and the frame counter in

the header of each frame. The approach is

scalable, therefore much higher data rates

(>50 Mbps) may be achievable also with more

GPP cores.

1. Introduction

The feasibility of greatly expanding the real-time data

rate capability of a GNU Radio modem at a reasonable

cost now exists because of the following two trends in

the Personal Computer (PC) and Server market:

1. A continuous improvement in the number of

General Purpose Processor (GPP) cores in a

single Personal Computer (PC) or Server.

2. A continuous lowering of costs for PCs/Servers

with multi-core GPPs up to at least 64 cores.

Proceedings of the 11th GNU Radio Conference,

Copyright 2021 by the author.

Moore’s Law on increasing the speeds on an individual

GPP single core has mostly stagnated for at least the last

10 years. However, the PC/Server industry trend to

expand the number of cores in a GPP now provides a

path forward still for applications like GNU Radio to

greatly expand their performance speeds.

Demonstrating via actual testing that a GNU Radio

Software Defined Radio (SDR) modem can achieve at

least 10 Mbps with BPSK by using only GPP cores in

parallel that are inside an 8-core GPP PC may unlock the

potential for new GNU Radio high data rate (HDR)

applications. For example, the design documented in this

paper should be scalable to much higher data rates with

more cores. It could be possible to achieve data rates

>50 Mbps in real-time with a 32-48 core PC/server,

GNU Radio, and a >100 Megasample per second

“dongle” unit with a 10 Gigabit Ethernet interface. Field

Programmable Gate Array (FPGAs) or Graphics

Processor Units (GPUs) are not needed with this HDR

parallel GPP multi-core approach.

One could even consider the feasibility of deploying

GNU Radio on cloud servers with the digital complex

I/Q stream originating from a ground station “hardware

dongle” at a different geographic location.

Some of the challenges on increasing the performance of

GNU Radio and SDRs in general with only GPPs is

documented in (Bloessl et al., 2019). The approach in

this paper using multi-cores in parallel and the

demonstration documented in this paper can provide one

potential path forward in order to overcome those

challenges.

2. Demonstration Test Objective

The primary objective of this demonstration test activity

is to show that a GNU Radio HDR SDR receiver can be

developed that can achieve data rates of at least 10 Mbps

with BPSK in real­time using a relatively low cost 8-core

PC.

Demonstration of GNU Radio High Data Rate BPSK 10Mbps Modem

Real-Time with Only Multi-Core General Purpose Processors (GRCON 2021)

3. Scope of Demonstration Test

For Satellite communications, the Binary Phase Shift

Keying (BPSK) modulation waveform is used

extensively. Therefore, the author conducted a BPSK

test case at 10 Mbps.

4. GNU Radio SDR Receiver Design

This section describes the details of the GNU Radio SDR

design and implementation for 10 Mbps BPSK.

The author implemented the inexpensive GNU Radio

SDR receiver with a Lenova IdeaPad 5 laptop

(≈$650.00) containing an Advanced Micro Devices

(AMD) Ryzen 7-4700U 8-core GPP, the free open

source Linux/Ubuntu operating system, the free open

source GNU Radio software (version 3.8.3), and an

inexpensive <$200.00 Commercial Off-The-Shelf

(COTS) LimeSDR-mini hardware transmit/receive

dongle. The LimeSDR-Mini has a Universal Serial Bus

(USB) 3.0 interface on one side for the connection to the

Lenova laptop and about a 30 Megasample per second

maximum capability. On its other side, the LimeSDR

mini dongle has 50 ohm SubMiniature version A (SMA)

transmit and receive Radio Frequency (RF) interfaces.

Please refer to the following for a detailed description of

the LimeSDR-mini hardware dongle functions and

design:

https://limemicro.com/products/boards/limesdr-mini

The author implemented the design with GNU Radio

based on a non-GNU Radio parallel multi-core GPP

approach documented in (Grayver et al., 2020).

Figure 1 depicts the GNU Radio Companion (GRC)

Flowgraph Graphical User Interface (GUI) for the BPSK

test demonstration.

Please refer to (Miller, 2019) for a detailed description

on the basic BPSK flowgraph block settings when using

GNU Radio up to 1.0 Mbps with only a single GPP core.

This paper will focus on the additions of parallel Symbol

Synchronizer/Costas Loop chains to greatly increase the

real-time data rate capability of the GNU radio modem

while only using a single PC with an eight-core GPP.

The author implemented the GNU Radio SDR HDR

receiver with mostly the GNU Radio blocks that were

already available in the GNU Radio Block In-Tree

library except for the final frame stitching blocks

(“myframer”, “frame_stitcher”, and “TagASM”). The

author implemented the “myframer” and

“Frame_stitcher” Out Of Tree (OOT) blocks via C++,

however even those blocks were created by just

modifying the code from the .cc file of an existing GNU

Radio In-Tree block. For example, the In-Tree

“tagged_stream_mux_impl.cc” code was modified to

create the “myframer” and “frame_stitcher” blocks.

The “myframer” block just eliminates blocks that are not

the correct length caused by the I/Q stream discontinuity

break before each symbol synchronizer chain (“Keep M

in N” block). The C++ “memcpy” function is used for

speed.

The frame_stitcher block reassembles the frames into the

correct single stream order via the frame header counter.

The frame_stitcher block also deletes occasional

duplicate frames that occur because of the chunk

overlaps. Again the C++ “memcpy” function is used for

speed in this block.

The “TagASM” blocks in Figure 1 are also OOT blocks,

but they are just modified versions of the “Correlate

Access Code – Tag” block created to include a phase

ambiguity resolution feature using the ASM in addition

to tagging each frame ASM.

For the OOT blocks, the GNU Radio inputs and outputs

for each GNU Radio block Scheduler “Work” call were

set at large minimum values using the

“set_output_multiple()” function in the block code in

order to provide long minimum input/output blocks

during each “Work” call. Specifically, setting the

minimum multiple value for the noutput_items

parameter was done to guarantee at least 7 frames (One

frame is 4224 bits in length as described below) were

processed with each GNU Radio Scheduler “Work” call

in order to improve GNU Radio flowgraph speed and

performance at high data rates.

When running the transmit/receive loops in Figure 1, the

transmit signal originates from a prepared modulation

file so that the modulator running at 20 Megasamples per

second only requires one GPP core for testing the HDR

receiver.

Figure 2 depicts the creation of the modulator file. The

modulator file including the ASMs and header counter

were implemented with existing GNU Radio library

blocks. No OOT blocks were needed in the development

https://limemicro.com/products/boards/limesdr-mini

Demonstration of GNU Radio High Data Rate BPSK 10Mbps Modem

Real-Time with Only Multi-Core General Purpose Processors (GRCON 2021)

Figure 1: GNU Radio Companion GUI Flowgraph for Real-Time BPSK Test Case

Figure 2: GNU Radio Companion GUI Flowgraph for Modulator File Creation

Demonstration of GNU Radio High Data Rate BPSK 10Mbps Modem

Real-Time with Only Multi-Core General Purpose Processors (GRCON 2021)

of the modulator file with the needed ASM, counter, and

frame length. About 1.0 seconds of a 101010 repeating

pattern for initial receiver synchronization was added to

the beginning of the modulator file.

The frame size used for this demonstration was 4224 bits

in length including a 64 bit ASM and 64 bit header with

the counter.

The “affinity” setting of each block was used in order to

efficiently use the PC 8-cores. Table 1 lists the affinity

settings for each block (each block was assigned to a

specific GPP core). In this paper, a term “chunk” is used

that is introduced in detail in (Grayver et al., 2020). A

single chunk is defined as one continuous stream of

samples that enters a single symbol synchronizer block

without a discontinuity: 80000 samples as seen in

Figure 1 (“Keep M in N” block, “M” parameter setting).

Each Symbol Synchronizer block and Costas Loop block

chain for each chunk stream was placed onto a dedicated

single GPP core. Figure 1 depicts the overlap of the

chunk chains so that a little more than a one frame

overlap exists at the beginning and end of each chunk

relative to an adjacent chuck chain.

About an extra 800 bits overlap beyond just one 4224 bit

frame was also used because the Symbol Synchronizer

block and Costas Loop block need to re-sync for each

new chunk due to the discontinuities between chunks on

each chunk chain. Also, extra overlap is required for the

variation in the transmitted symbol clock rate. For

example, the symbols per one 80000 sample chunk can

vary randomly by a few symbols from chunk to chunk

depending on the clock stability of the transmitter.

5. Demonstration Test Approach

The author conducted the following specific

demonstration test case with the test configuration of

Figure 3:

• BPSK at 10.0 Mbps

Table 2 lists the driving GNU Radio block parameter

settings for the BPSK test case.

The author configured the GNU Radio and LimeSDR-

Mini for a 435.0 MHz RF test loop. Figure 3 depicts the

demonstration loop test configuration with 50 ohm

coaxial cables between the LimeSDR-Mini transmit RF

output and LimeSDR-Mini receiver RF input.

The GNU Radio modem transmitted a repeating 32 bit

pattern in the data portion of each frame as depicted in

Figure 2. The LimeSDR-Mini source block was set to

20 Megasamples per second to achieve the demonstrated

data rates with 2 samples per symbol.

The GNU Radio Symbol Synchronizer block was set to

use the Gardner algorithm. With the Gardner algorithm,

the Polyphase Filterbank setting was chosen for the

block. For these demonstrations, the author used his own

modulator set of blocks rather than a GNU Radio

modulator block for better compatibility with the

LimeSDR Sink block.

The Binary Slicer blocks translated each bit into one hard

decision 8-bit byte for ASM tagging, frame stitching, and

convenient file storage for post-test playback to check

for bit errors in non-real-time.

6. Demonstration Test Results

The following performance occurred during the BPSK

test case:

• The GNU Radio SDR modem successfully

recovered the transmitted frame stream with the

correct repeating bit pattern in the data field of

each frame.

• The GNU Radio SDR successfully “stitched”

(reassembled) the frame stream back together at

the high data rate in real-time using the counter

in the frame header.

• The GNU Radio SDR modem successfully

continually maintained/re-established Symbol

Synchronizer Lock and Carrier Loop lock for

each new “chunk” on each chunk chain.

The author conducted this initial GNU Radio SDR

demonstration test and feasibility phase without adding

noise, therefore, as one would expect, perfect Bit Error

Rate (BER) performance occurred. The author verified

perfect BER performance by verifying that the final

frames were re-ordered properly via the counter in the

header of the frame and also by conducting post-test

playback bit error measurements with saved files.

The test results demonstrated that within the scope of this

initial testing phase, the implemented GNU Radio SDR

modem can achieve BPSK data rates of at least 10 Mbps

in real-time by using a flowgraph design that takes

advantage of GPP multi-cores in parallel.

Demonstration of GNU Radio High Data Rate BPSK 10Mbps Modem

Real-Time with Only Multi-Core General Purpose Processors (GRCON 2021)

Table 1: GNU Radio Block Affinity Settings for Test Cases

Figure 3: GNU Radio Demonstration Test Loop Configuration With LimeSDR-Mini

Table 2: GNU Radio Block Parameter Settings for BPSK Test Case

GNU Radio
Modem
Laptop

LimeSDR-Mini
USB 3.0

435.0 MHz

RF Out
SMA

RF In
SMA

GNU Radio Companion Blocks

GPP Core

Symbol Synchronizer/Costas Loop (Chunk Chain #1): 4

Symbol Synchronizer/Costas Loop (Chunk Chain #2) 5

Symbol Synchronizer/Costas Loop (Chunk Chain #3) 6

Symbol Synchronizer/Costas Loop (Chunk Chain #4) 7

LimeSDR Source (Receiver) 1

Lime SDR Sink (Modulator) 0

“Frame Stitcher” Block 3

“TagASM” Blocks 3

“myframer” Blocks 3

“Binary Slicer” and “Complex To Real” Blocks 3

“Keep M in N” Blocks 2

“Skip Head” Blocks 2

GNU Radio Companion Block
BPSK Test Case

(10.0 Mbps)

LimeSDR-Mini Dongle Source Block:

Center Frequency 435.0 MHz

Sample Rate 20.0 Msps

Costas Loop Blocks:

Order 2

Symbol Synchronizer Blocks:

Input samples per symbol 2

Output samples per symbol 1

Demonstration of GNU Radio High Data Rate BPSK 10Mbps Modem

Real-Time with Only Multi-Core General Purpose Processors (GRCON 2021)

7. Forward Work

Additional follow-on activities should include upgrading

the GNU Radio modem as follows:

• Test the GNU Radio modem with QPSK at

≥20 Mbps.

• Consider upgrading to a 32-48 core PC/server to

demonstrate the feasibility of >50Mbps BPSK

and >100Mbps QPSK real-time using only

parallel GPP cores with GNU Radio. At this

time, no known showstoppers with GNU Radio

or a Linux PC/Server would prevent scalability

of the design in this paper to additional GPP

cores and higher data rates by just adding more

Symbol Synchronizer and Costas Loop parallel

chains and obtaining a new hardware “dongle”

with a higher sample rate capability.

• Investigate different transmit/receive carrier

frequency and symbol frequency offsets.

• Add HDR block decoding using parallel GPP

cores.

• Conduct demonstrations with noise to

characterize BER vs Eb/No performance.

8. Conclusions

• Within the scope of this initial demonstration

and feasibility testing phase, the GNU Radio

modem can support BPSK data rates of at least

10.0 Mbps in real-time by just using GPP cores

in parallel so that FPGAs and GPUs are not

required for HDR performance.

• The design documented in this paper should be

scalable to much higher data rates with more

cores. It could be possible to achieve data rates

>50 Mbps in real-time with a 32­48 core

PC/server, GNU Radio, and a >100

Megasample per second “dongle” unit with a

10.0 Gigabit Ethernet interface. Also, Field

Programmable Gate Array (FPGAs) or

Graphics Processor Units (GPUs) are not

needed with this HDR “GPP multi-cores” only

approach.

References

Bloessl, Bastian, Müller, Marcus, and Hollick, Matthias.

Benchmarking and Profiling the GNU Radio

Scheduler. Proceedings of the 9th GNU Radio

Conference, September 2019.

Grayver, Eugene and Utter, Alexander. Extreme

Software Defined Radio – GHz in Real-time. IEEE

Aerospace Conference 2020.

Miller, David T. Demonstration of GNU Radio

Compatibility with a NASA Space Communications

Network Modem. Proceedings of the 9th GNU Radio

Conference, September 2019.

Biography

David T. Miller received a B.S. degree in electrical

engineering from Virginia Tech and a M.S. degree in

electrical engineering from Virginia Tech. He is

currently employed as a NASA contractor with

Peraton, Inc, but note that all information and

opinions presented in this paper come only from the

author’s independent work and do not reflect the

position or opinions in any way of NASA or Peraton.

