
GR 4.0 Workshop
GNU Radio Conference 2021

Josh Morman
Bastian Bloessl
Garrett Vanhoy

Purpose

● Step through the proposed changes for GR 4.0 (newsched)

● Facilitate discussion about ongoing design decisions

● Get a hands-on feel for what core and application development may be
like in a future GR

● Prioritize development items for the near and medium term

Feedback and comments are very much appreciated

Overview

At GRCON20, we presented a high level overview of the
proposed runtime

In the meantime, we have been able to continue
development on the proof of concept (newsched) and
learn what is feasible, what is not, and bring in some
new concepts

Vision for GNU Radio 4.0

4

Modular CPU Runtime

● Scheduler as plugin
● Application-specific

schedulers

Straightforward implementation of (distributed)
SDR systems that make efficient use of the

platform and its accelerators

Distributed DSP

● Setup and manage
flowgraphs that span
multiple nodes

Heterogeneous
Architectures

● Seamless integration
of accelerators (e.g.,
FPGAs, GPUs, DSPs,
SoCs)

Agenda

● Overview
● Block Interfaces

○ Major changes to the Block API

● Block generation process
○ YAML driven block design to create and maintain blocks with less steps

● Scheduler Interfaces
○ How modular schedulers interact with the runtime

● Custom Buffers
○ What is different from the SDR 4.0 work

● Benchmarking
○ How does GR 4.0 improve the performance state of things - some examples

Getting Set Up

newsched repo:
- https://github.com/gnuradio/newsched

Docker either for reference, or sandbox
- https://github.com/mormj/newsched-docker/

Newsched can be built (might need additional steps if using CUDA)

1. Create a prefix
a. mkdir /path/to/prefix/src
b. cd /path/to/prefix/src
c. copy setup_env.sh from newsched-docker
d. git clone https://github.com/gnuradio/newsched
e. cd newsched

(adjust newsched-docker as needed)

meson setup build
cd build
ninja

also, can
docker pull mormj/newsched-demo

https://github.com/gnuradio/newsched
https://github.com/mormj/newsched-docker/
https://github.com/gnuradio/newsched

Why meson?

https://mesonbuild.com/

Tradeoff between getting things working quickly and the flexibility of a more
powerful build system (e.g. CMake)

I have stuck with the "quickly" aspect of things

Will do a port to CMake later on

- Lack of macros/functions means a lot of duplicated code
- But lack of macros is part of the meson design philosophy

https://mesonbuild.com/

Class Inheritance Hierarchy

Graph

Node

Block

Ports

Edges

PortsParameters

Name

Port
Name Direction

Type

FlatGraph

Block
Edges

Flowgraph

DomainsFlatGraph

Anything that can be
connected together

Unit of Signal
Processing

Connects things
together

A graph, but
hierarchy reduced to
blocks

Overall hierarchical
organization of blocks
and high level
controller

basic_block

hier_block2

flat_flowgraph top_block

block

Buffer
Memory for
samples on
edges of
flowgraph

Work()
Nodes

Block API

● The big changes - simplify, simplify, simplify
○ no more forecast() - return the same info in the work()
○ no more history() - overcomplicates schedulers
○ work() directly callable - allow for "scheduler-less" operation
○ work() takes input/output structs - more flexibility
○ no more dynamic nports - blocks will need parameter to specify nports
○ port as first-class object
○ multiple implementations per block - e.g. CPU, CUDA, OpenCL, ...
○ auto-generated code - less places to type things, auto pybind

● TBD
○ other scheduler hints - output_multiple, relative_rate, sample_delay, etc.

● The future
○ Parameters as centralized path for setters/getters, messages, tags, RPC
○ even more auto-generation, better tools

Block API - work()

 virtual work_return_code_t work(std::vector<block_work_input>& work_input,
 std::vector<block_work_output>& work_output)

struct block_work_input {
 int n_items;
 buffer_reader_sptr buffer;
 int n_consumed; // output the number of items that were consumed on the work() call

struct block_work_output {
 int n_items;
 buffer_sptr buffer;
 int n_produced; // output the number of items that were produced on the work() call

Block API - work()

forecast() - how to handle lack thereof

at the beginning of work, set your condition

 if (work_input[0].n_items < (int) d_length)
 {
 work_output[0].n_produced = 0;
 work_input[0].n_consumed = 0;
 return work_return_code_t::WORK_INSUFFICIENT_INPUT_ITEMS;
 }

Also, can add more fields to indicate more information to scheduler:
- Insufficient, but how many did I need?
- Don't call again for an amount time

Block API - work()

history() - how to handle lack thereof

Simple - just don't consume all the samples

- class variable d_history
- "forecast" d_history greater than you will consume
- don't consume d_history samples

Motivation - the number of blocks that use history is limited, but it puts a
substantial burden on the corner cases for schedulers

Schedulers will still have to solve the problem of not all samples being
consumed

Block API - port

Ports are
- typed
- untyped
- message

Handle some of things that GRC handles at the higher layer
- multiplicity

Ports can be connected together with items of same size
- Is there a need for e.g. stream_to_vector
- Connect different sized objects together

- creates nightmares with tags to be figured out

"Scheduler-less" Operation

Why Scheduler-less

Why would we want to call a block's work function without a scheduler

- For debug
- For QA/validation of the work function
- For offline simulation scripts for prototyping (i.e. MATLAB -like)

- but still use the same dsp as GNU Radio

- Push data through rather than stream/schedule

● In Current GR, the scheduler API is all jumbled up with the block API, e.g. a typical
work() function where the signal processing in the block happens

● Scheduler calls work function, work function calls back into scheduler – not clean

● (one goal) To make work() directly callable, we need to keep the block API clean

● Currently in newsched, the exception to this is message ports

○ post() to a port within a block will immediately put the message via its parent
interfaces onto the queue of a scheduler

Why callable work() is not currently possible

myblock::work() Runtime/scheduler

call the work function

get the tags, nread

update state

return nconsumed

block::work()

(does more stuff
with scheduler

state)

The old way

1. Done
a. De-couple scheduling from work()

2. [in-progress]
a. Python [pybind] bindings to convert:

i. numpy arrays ← → gr::gr_block_work_io objects
ii. Python dicts ← → gr::tag_t objects

b. Error handling associated with conversions
c. A wrapper in C++ around the work() function that only takes in buffers for inputs

and allocates buffers for outputs (much like MATLAB’s step)

What needs to happen for scheduler-less

An Early Example

Where is this being done?

gnuradio/newsched: branch gvanhoy/direct_block_interface

Files: newched/runtime/python/gr/bindings

Block Design Workflow

YAML Driven Block Workflow

Problem:
- Currently there is a lot of boilerplate that the user has to do

manually (after modtool is done) - e.g. add a parameter
- This becomes a barrier to people creating usable DSP in

GNU Radio
- With multiple implementations per block (CUDA, openCL,

XRT, …), the block library grows in size and complexity
Goals:

- multiple implementations
- get the user to work() function quicker
- minimize boilerplate through automation
- unify interfaces/mechanisms (constructor, setters, tags,

RPC, messages) via automation

With multiple
implementations per
block being added,
organization of the code
becomes key

GR 4.0 - Block Creation Workflow

YAML Driven Architecture

block.yml

Properties
Ports
Parameters (cotr args)
Callbacks
Templating
Domains
Docs

block_impl.hh/cc

work() function
private vars
(multiple impls)

block_pybind.cc

Python bindings

block.hh

boilerplate top level
header

… Future

GRC
RPC
Parameter
mechanisms

Manually created/edited (user entry point)

Automatically Generated

Documentation

Basic File Structure

1) YAML file describes block

2) header file for the implementation

3) c++ file for the implementation

Manually managed files

Example Files

Templated Example

Goal to have more templating in blocks to encapsulate
common code

e.g. in gnuradio, separate implementations for blocks
that do the same thing for float, complex, short

Scheduler Design

Flowgraph

Structure and Terminology

Flowgraph
Monitor

blocks edges

Scheduler

blocks buffers

Scheduler

blocks buffers

threads

Q

threads

Q
Flowgraph object top level configuration
Flowgraph monitor manages start/stop/done

Logically define a flowgraph
via blocks and connections

Flowgraph Monitor

Top level object in the runtime to monitor
flowgraph execution

Now that execution is potentially spread
across multiple schedulers

The entity that can get a response that a
block has finished and tell the rest of the
blocks to finish as well

Could also be used for flowgraph
introspection in a distributed case

Flowgraph Monitor

Worker
Thread

Worker
Thread

Worker
Thread

DONE

EXIT EX
IT

EXIT

Scheduler Interface

A big part of the design is having modularity since we can't solve the
scheduling problem for all architectures and applications

Currently, this is the interface:

 virtual void initialize(flat_graph_sptr fg, flowgraph_monitor_sptr fgmon) = 0;
- // Instruct the scheduler to initialize buffers, threads, etc.

 virtual void push_message(scheduler_message_sptr msg) = 0;
- // Push a message onto the input queue (or distribute to worker threads)

 virtual void start() = 0;
 virtual void stop() = 0;
 virtual void wait() = 0;

Creating Your Own Scheduler

scheduler_mysched.hh/cc implements scheduler interface

- push_message() - need some sort of queue so this method can return
right away

- initialize() - launch the thread(s) to service the queue, create buffers
for the edges in the flowgraph, store the flowgraph objects

- start/stop - at least pass the start/stop messages to the blocks
- plugin factory interface - currently half-baked

Scheduler Messages - scheduler_message.hh

Common base class for all messages going into the

enum class scheduler_message_t {

 SCHEDULER_ACTION,

 MSGPORT_MESSAGE,

};

class scheduler_message

For Scheduler Actions (notify the scheduler of some event such as data ready)
enum class scheduler_action_t { DONE, NOTIFY_OUTPUT, NOTIFY_INPUT, NOTIFY_ALL, EXIT };

class scheduler_action : public scheduler_message

For Messages, use a different type containing a callback
class msgport_message : public scheduler_message

N-Block/Thread (NBT) Scheduler

Defaults to TPB
- Unless add_block_group

(vector<block_sptr>)
is called

Thread blocks on Queue

If message is available, acts
accordingly

Meat of scheduler in
`graph_executor.cc`

NBT Scheduler

Worker Thread Worker Thread
. . .

QUEUE QUEUE

push_msg
[blkid]

blocks buffers buffersblocks

Scheduler Benchmarks

The thread grouping has the intended
effect

For newsched:
- nthreads=0 => TPB
- nthreads=4, blocks grouped

sequentially in
nblocks/nthreads with the
src, snk, head joining the
adjacent block groups

Following methodology from gr-sched and associated paper

NULL SRC HEAD COPY COPY NULL SNK...
nblocks

NBT Scheduler - Thread Wrapper

1. Block on input queue
2. Decode the message
3. Handle accordingly

NOTIFY_{INPUT,OUTPUT}
- Cause run_one_iteration to be called

DONE
- Signal that a block requested flowgraph done, flush buffers and

then notify FGM
EXIT

- Immediately exit the thread (FGM signaled flowgraph completion
MESSAGE

- Call the callback() method

NBT Scheduler - Executor - graph_executor.cc

very similar to GR Block Executor - more(over) simplified
run_one_iteration // (someone told me i needed to do some work)
{

foreach (b: blocks) ← // TODO intelligently decide the order of blocks to schedule
{

foreach (p: b.ports())
{

// how much buffer space available
// prepare work_{input,output}

}
{

b.do_work()
// adjust buffers, try again if necessary
// update tags
// update buffer pointers

}
}
return status

}

Message Ports

When connect() takes place between blocks/ports on a graph
- downstream port given reference to upstream port object

- connected_ports()

- Scheduler also responsible for informing ports of their "parent interface"

From inside a work() function, post(pmt) to the port object

- Receiving port will pass the message ptr to its owning scheduler, and get
placed on the queue

Block 1 Block 2

Scheduler

work: post() callback

Custom Buffers

Interface

Buffer is associated with edge in graph

Assumption: in work(), in and out buffers are already in appropriate device
memory - e.g. should not have H2D or D2H memcpy in work()

Depending on placement of accelerated block, custom buffers need to be on
both upstream and downstream edge

cpu block accel block cpu blockaccel block cpu block

H2D D2D D2H

Abstract Buffer API - buffer.hpp

public:

 virtual bool read_info(buffer_info_t &info) = 0;
 virtual bool write_info(buffer_info_t &info) = 0;

 virtual void post_read(int num_items) = 0;
 virtual void post_write(int num_items) = 0;

Return the state of the read/write
buffer

Tell the buffer what was done to it,
so it can update pointers

Looks much like current GR buffer API

Interface

flowgraph->connect(src,blk1)->set_buffer(CUDA_BUFFER_ARGS_H2D)
flowgraph->connect(blk1,blk2)->set_buffer(CUDA_BUFFER_ARGS_D2D)
flowgraph->connect(blk2,blk3)->set_buffer(CUDA_BUFFER_ARGS_D2H)
flowgraph->connect(blk3,snk) // uses default buffer

flowgraph->run()

src blk1 snkblk2 blk3

Custom Buffer Benchmarks

memmodel 0: H2D, D2D, D2H
veclen is batch_size into gpu

In the gr39 case, the H2D, D2H
is done in every work() call

In the newsched case, custom
buffers call the work() function
assuming data is already
accessible by gpu (either in
device or pinned memory)

NULL SRC HEAD COPY COPY NULL SNK...
nblocks

these copy blocks running on gpu accelerator

Benefit decreases as kernel
execution time increases

Good Bye Domain Adapters

Domain Adapters were an attempt to abstract buffers over a connection
between blocks handled by different schedulers (potentially on different
compute nodes)

Became difficult to handle cleanly in the scheduler, and not well thought out
enough to apply to distributed flowgraphs

Concept still needs to be ironed out, but not necessary for now

D
A

D
A

svrclient

Benchmarking

Benchmarking/Profiling Tools

● gr-bench (based on gr-sched) (https://github.com/mormj/gr-bench)
○ Some python scripts for iterating benchmark flowgraphs and plotting results

● nvprof/nvvp
○ For profiling CUDA applications, shows/traces relative time spent by memcpy, kernel

launch executions

● prof/flamegraph-rs
○ For non-CUDA applications, sampling profiler to show proportion of execution time spent

in each function

BM Flowgraph JSON
Results

Iteration Script

https://github.com/mormj/gr-bench

Benchmarking

Primarily interested in flowgraph execution time

Method: Create a parameterized flowgraph that prints to stdout:
 [PROFILE_TIME] time_in_sec [PROFILE_TIME]

Gather these up over a range of parameters and plot

Example ...

TODO: The Future

What capabilities do we want to expand in the future

- GRC/modtool integration
- Blocking I/O
- Distributed Operation
- CMake or figure out meson
- Implementation extensions of in-tree blocks

- (don't have CUDA in-tree)

- Async Scheduler/Runtime
- Commonality between parameter access mechanisms

- first attempt was here: https://github.com/gnuradio/newsched/pull/71

https://github.com/gnuradio/newsched/pull/71

Parameter Access Mechanisms

The current mechanism for having publicly exposed variables requires a lot of manual code
intervention

- constructor args
- setters/getters
- message ports
- RPC
- tags

Define each parameter once, then wrap changes in the other routes to change parameters
generically

Also, parameters can be scheduled to change at a particular sample number if they pass through the
scheduler

Reduce the burden of making parameter changes threadsafe by ensuring callbacks don't collide with
the work function by passing through the scheduler

Parameters

Block Schedulerwork()

work()

work()

set_k(17.5)

request_parameter_change(block,k,17.5, cb_fcn)

on_parameter_change(args)

Runtime
RPC

msgq

tag

param_change_callback(args)return

Callbacks

Block Schedulerwork()

work()

work()

do_something(x,y,z)

request_callback(block,"do_something",args,cb_fcn)

do_something_handler(args)

Like parameter changes, general public functions need to pass through the
scheduler to remove the thread safety requirement on the block

cb_fcn(args)return

Same path holds for RPC, message port, etc

Tutorial

Getting Set Up

newsched repo:
- https://github.com/gnuradio/newsched

Docker either for reference, or sandbox
- https://github.com/mormj/newsched-docker/

Newsched can be built (might need additional steps if using CUDA)

1. Create a prefix
a. mkdir /path/to/prefix/src
b. cd /path/to/prefix/src
c. copy setup_env.sh from newsched-docker
d. git clone https://github.com/gnuradio/newsched
e. cd newsched

(adjust newsched-docker as needed)

meson setup build
cd build
ninja

docker run --network=host -it --rm -v `pwd`:/workspace/code
newsched-demo-nocuda bash

https://github.com/gnuradio/newsched
https://github.com/mormj/newsched-docker/
https://github.com/gnuradio/newsched

Docker with CUDA

https://nvidia.github.io/nvidia-docker/

- Set up the repository

apt install nvidia-container-toolkit

docker run --network=host --gpus all -it --rm -v `pwd`:/workspace/code
newsched-demo bash

https://nvidia.github.io/nvidia-docker/

